什麼是食慾素(下視丘分泌素)?

omnipresent

Orexin is found in many tissues, including the hypothalamus, spinal cord, sensory ganglia, pancreas, pituitary gland, adrenal glands, salivary glands, and lacrimal glands. Orexin levels can be easily measured in blood, urine, and cerebrospinal fluid. Orexins are involved in a variety of biological functions, including wakefulness, sleep, food and fluid intake, pain, and memory. Orexin is also involved in the regulation of glucose metabolism. Orexin appears to be ubiquitous and has multiple biological functions. Further research may uncover additional functions for this relatively new neuropeptide. It could play a therapeutic role in the near future.

Orexin-A and Orexin-B

Orexin (also known as hypocretin) was discovered through reverse pharmacology in 1998 as an endogenous ligand of two orphan G protein-coupled receptors. Orexin exists in two molecular forms, orexin-A and orexin-B, derived from the same 130 amino acid residue precursor (preproorexin). Orexin-A is a 33 amino acid residue peptide with two intrachain disulfide bonds that are completely conserved in tetrapods. Orexin-B is a linear 28 amino acid residue peptide. Orexin specifically binds to the orexin receptors OX1R and OX2R. Orexin-A binds OX1R and OX2R with high affinity, while orexin-B selectively binds OX2R with similarly high affinity. The orexin system plays a role in regulating eating and drinking behavior, metabolism, sleep-wake cycles, and the endocrine system.

can lead to pathological diseases

Orexins have multiple effects and influence many functions, including autonomic regulation, endocrine function, food intake, appetite, arousal, and sleep. Orexin and its receptors are found in various organs outside the central nervous system. These molecules are involved in a variety of physiological mechanisms. Based on the current findings, there is strong evidence supporting their functional role in the periphery. Furthermore, many studies have shown that disturbances in the expression or levels of orexin peptides can lead to pathological diseases such as late-onset obesity, impaired insulin sensitivity, hyperinsulinemia, and intestinal dysfunction. However, the exact mechanism by which orexin exerts its effects is not fully understood.

Neurotransmitters produced by small groups of neurons in the lateral hypothalamus and perifornical region

Orexin (also known as hypocretin) is a neurotransmitter produced by a population of small neurons in the lateral hypothalamus (LH) and perifornical (PFA) regions. The name orexin comes from the Greek root "orexis". Orexin peptides are known to regulate arousal, arousal, food intake, and reward-related behaviors through their actions in a perturbed group of brain nuclei (for review, see the hypothalamus in the Brain Peptides section of this book Secretin/orexin chapter). Orexin peptides exist in two forms, both produced by cleavage of preproorexin: orexin-A (33 amino acids) and orexin-B (28 amino acids). Orexin-A can bind to the orexin-1 receptor (O×1R) and with lower affinity to the orexin-2 receptor (O×2R), whereas orexin-B has preferential binding affinity to O×2R. Both orexin receptors are G protein-coupled receptor subtypes and are widely distributed throughout the central nervous system. 20 Due to the lack of effective and commercially available O×2R antagonists, orexin-A signaling at the O×1R has been more extensively studied and better characterized.

Orexin neurons are interconnected with basal structures in the hypothalamus that are involved in the control of food intake. In particular, orexin-producing neurons in the LH receive input from neuropeptide Y-/agouti-related peptide-expressing neurons in the arcuate nucleus, leading to the idea that LH orexin neurons are “secondary” in the integration process involved in facilitation Neurons. Food intake. However, other evidence suggests that orexin neurons may function as "first-order" neurons. In this capacity, they are sensors of metabolic status, directly regulated by circulating factors such as leptin, glucose, and ghrelin. Orexin neurons may exhibit primary and secondary properties in a complex integration of neuropeptide and fat inhibitory signals that exert counterregulatory effects on feeding behavior (i.e., increased and decreased food intake). In terms of feeding behavior, many reports describe the orexigenic properties of orexin-A on food intake. For example, intracerebroventricular (icv) administration of orexin-A increases food intake in rodents. When given a choice, administration of orexin to rats will selectively increase intake of the preferred diet, and more specifically, increase intake of a diet high in saturated fat. Furthermore, pharmacological antagonism of orexin-1 receptors effectively blocks orexin A-induced hyperphagia and behavioral satiety.

Regulate sleep/wakefulness

Substantial evidence supports the role of endogenous orexins in regulating sleep/wakefulness and metabolic status. Central to all of orexin's effects is the consistent finding that multiple stress indicators are displayed after orexin administration, and that some stress indicators disappear when orexin production or action is compromised. Remarkable progress has been made in understanding the importance of the endogenous orexin system, largely due to the development of transgenic models that compromise the orexin peptide or receptor. In particular, the development of orexin-ataxin-3 transgenic mice and rats was a milestone in our ability to understand the broad effects of these peptides on multiple behavioral, endocrine, and cardiovascular systems. Now, with the advent of selective OX1R antagonists and at least one relatively selective OX2R agonist, the site and mechanism of orexin action in the brain can be further elucidated. Since peptide replacement can restore normal sleep/wake patterns in genetically modified animals, there is great promise in using orexin or orexin analogs to treat narcolepsy/cataplexy in humans. Key to the development of these potential therapeutic strategies is understanding the receptor subtypes responsible for orexin's effects on cardiovascular and neuroendocrine function. Clearly, potential side effects related to cardiovascular control and hormone release are possible and should be monitored if the therapeutic effects of orexin are to be tested in humans.

Stress and wake/sleep

Orexin/hypotocretin neurons are located in the perifornical region of the lateral hypothalamus and are necessary for maintaining wakefulness and behavioral arousal. Loss or reduction of orexin/hypotocretin peptides or receptors can lead to narcolepsy and cataplexy. Orexinergic neurons project extensively to the forebrain, including the cerebral cortex, brainstem, and spinal cord, and like the acetylcholine basal forebrain system, orexinergic neurons project to subcortical relays in the basal forebrain. Orexin/hypotocretin regulates multiple wake-promoting neurotransmitter systems, including noradrenergic, histaminergic, and serotonergic neurons. Orexinergic neurons fire selectively during wakefulness and cease firing activity during REM and non-REM sleep. In the hypothalamus, extracellular concentrations of orexin/hypotocretin and orexin/hypotocretin mRNA expression also vary in a diurnal manner.

Increased drinking, food seeking, and spontaneous activities

Orexin, also known as hypocretin, is an appetite-inducing neuropeptide involved in the regulation of sleep-wake cycles and eating. Two hypocretins, orexin A (a 28-amino acid peptide) and orexin B (a 33-amino acid peptide), are synthesized in the LH. Orexin binds to two orexin receptor subtypes, OX1-R in the VMH and Arc and OX2-R in the PVN and hindbrain. Injection of orexins A and B into the ventricles or hypothalamus increases food intake but is not as effective as NPY. Orexin also increases drinking, food seeking, and locomotor activity.

The orexin system and the NPY system are bidirectionally connected. Intracerebroventricular injection of orexin can increase NPY expression, and NPY Y1 and Y5 receptor antagonists can reduce the orexigenic effect of orexin injection. GABA is also involved in the regulation of orexin activation. GABA neurons co-express orexin, and orexin neurons are activated by GABA agonists.

Orexin neurons are glucose sensitive and respond rapidly to changes in blood glucose levels, making them an early hypothalamic factor that triggers food intake. Glucose sensitivity makes orexin highly sensitive to changes in food intake. Reduced food intake results in increased orexin concentrations in the LH, increased orexin gene expression, and orexin receptor expression. Like NPY, orexin is also sensitive to changes in leptin levels. Leptin inhibits orexin gene expression, so increases in leptin due to satiety or increased obesity inhibit orexin activity in the hypothalamus, resulting in reduced food intake.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
哪些職業對健康影響最大?科學與現實的分析

哪些職業對健康影響最大?科學與現實的分析

在現代社會中,工作佔據了人們生命中相當大的一部分。然而,不同職業對健康的風險並不相同。一些工作性質或環境,會顯著增加慢性病、心理壓力、甚至縮短壽命的風險。以下從科學研究與醫學角度,探討幾類對健康損害較大的職業,並附上相關統計數據。

電擊槍的機制與對人體健康影響

電擊槍的機制與對人體健康影響

在現代執法中,警察常使用所謂「非致命性武器」(less-lethal weapons),其中最廣為人知的便是 電擊槍(Taser)。電擊槍的設計初衷是提供一種介於徒手制服與槍械之間的選擇,藉由暫時性電擊使嫌疑人失去行動能力,以降低致命暴力發生的風險。然而,電擊槍並非完全無害,背後涉及的電流機制與人體生理反應值得深入探討。

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

腫瘤治療的新挑戰 近十年來,免疫檢查點抑制劑(Immune Checkpoint Inhibitors, ICIs)改變咗癌症治療格局。當中 PD-1/PD-L1 抑制劑 已經成為多種腫瘤的一線或二線療法,而 VEGF 抑制劑 亦係抗血管生成治療嘅核心藥物。然而,臨床數據顯示,雖然 PD-(L...
疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛一直是全球道路安全的重要議題。許多人將疲勞視為「只是累了」,但科學研究表明,當人處於極度疲倦時,大腦功能下降的程度可與酒精中毒相當。不僅如此,長時間駕駛還會對身體健康造成慢性負擔。隨著科技發展,越來越多可穿戴裝置被設計用來協助監測疲勞狀態,其中,日本 Medirom 公司開發的 REMONY 裝置近日獲得國土交通省(MLIT)認證,成為市場矚目的焦點。本文將先探討疲勞駕駛的健康風險,然後客觀分析 REMONY 裝置的技術特點與潛力。

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟皮膚為何容易出現問題? 腳跟係身體承受最大壓力嘅部位之一。每日行走、站立,腳跟長期摩擦同受壓,如果缺乏適當護理,就會導致角質層過度增厚、乾燥同龜裂。當角質層愈厚,皮膚顏色會慢慢變得偏黃,甚至暗啡。 造成腳跟黃、裂、脫皮的常見原因 角質層增厚長期行走或穿硬底鞋,令腳跟角質層積聚過多,顏色...
Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 幾乎已經變成日常生活不可或缺嘅一部分。無論係屋企、公司、學校,甚至咖啡店同巴士,都有無線網絡覆蓋。但好多讀者都會擔心:「成日浸喺 Wi-Fi 入面,會唔會慢慢影響身體健康?會唔會致癌?會唔會令我失眠或者精神差?」 今篇文章會由淺入深,帶大家了解 Wi-Fi 嘅電磁波特性、科學研究結...
長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

好多人每日要長時間坐喺辦公室、電腦前面,或者瞓覺時維持同一個姿勢。結果往往出現腰酸背痛、手腳麻痺,甚至覺得關節「鎖住」郁唔到。久坐傷身腳麻痺點解長時間坐姿影響健康,都係大家經常搜尋嘅問題。今次我哋就一齊睇下背後原因。

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症最令人畏懼的地方,不單在於原發腫瘤本身,而是它能夠 轉移(Metastasis) —— 由原本的器官擴散至身體其他部位。事實上,大多數癌症致命的原因,並非來自腫瘤的「原居地」,而是因為它在其他重要器官(如腦、肝、骨、肺)形成了新的腫瘤。

腦癌種類全面介紹|常見類型與特徵

腦癌種類全面介紹|常見類型與特徵

腦癌(Brain Cancer)泛指源自腦部或蔓延至腦部的惡性腫瘤。臨床上可分為兩大類: 原發性腦腫瘤(Primary Brain Tumors):由腦部細胞本身變異而成。 繼發性腦腫瘤(Secondary / Metastatic Brain Tumors):由其他器官的癌細胞(如肺...