什麼是麥芽糖?它的歷史、特性、來源和用途

Carbohydrates are an important component of food. They are composed of carbon, hydrogen and oxygen. Lower molecular weight carbohydrates are often called sugars, with their names ending in the characteristic "ose." Some examples of these sugars are sucrose, lactose, glucose, maltose, etc.

Maltose is a disaccharide. It is produced by connecting two glucose units through α(1→4) bonds. The general formula of disaccharide is Cₙ(H2O)ₙ₋₁. The molecular formula is C12H22O11. It is a reducing sugar and undergoes metarotation.

The history of maltose

Discovery in Brewing: In ancient times , maltose has been part of human culinary history for thousands of years, and its discovery may be related to the early practice of brewing beer.

Brewing and Fermentation: In ancient China , historical evidence shows that maltose-containing beverages were brewed in ancient China as early as the Neolithic Age (approximately 7000-6600 BC). The Babylonians are believed to have brewed beer around 6000 BC, with maltose playing a role in the fermentation process.

In the early nineteenth century, there was a shortage of sucrose, and scientists began to look for other sources of sugar. French chemist Augustin-Pierre Dubrunfaut first discovered the phenomenon of mutarotation in 1844, when he noticed that the specific optical rotation of aqueous sugar solutions changed with time. In the same paper, he also showed that the conversion of sucrose in the presence of brewer's yeast was not the result of fermentation. Then Dubrenfort discovered the organic fructose molecule in 1847. He also discovered maltose, although this discovery was not widely accepted until 1872 , when Irish chemist and brewer Cornelius O'Sullivan confirmed the disaccharide maltose.

The word maltose is derived from "malt" and since it is a sugar, the suffix "ose" was added. Therefore, it is named "maltose", also known as maltose or maltotriose.

How is maltose formed?

Maltose is a disaccharide type of carbohydrate. It is designed from two glucose molecules. As the water molecule is removed, the two glucose molecules form a bond. The result is formed.

The molecular formula of maltose or maltose is C12H22O11.H2O. It is prepared from starch through amylase. After hydrolysis by acid, only d-glucose is produced.

When the dough is fermented, the yeast provides the sugar. Most of the sugar available to yeast is maltose, which comes from starch. It acts like an early product of photosynthesis rather than a warehouse product such as starch and its spoiled products.

Maltose structural formula

Carbohydrates are generally classified into monosaccharides, oligosaccharides, disaccharides, and polysaccharides based on the number of sugar subunits. Maltose is a disaccharide carbohydrate. Therefore, maltose is composed of two sugar units, an oligosaccharide and a disaccharide. It consists of two glucose molecule modules. Glucose is a common hexose sugar, a simple sugar containing six carbon atoms.

In maltose, two units of glucose are in the form of pyranose sugars. O-glycosidic bonds connect these units. In this bond, the first carbon (C1) of the first glucose molecule is connected to the fourth carbon (C4) of the second glucose molecule, forming a (1→4) bond.

Since the glycosidic bond to the anomeric carbon (C1) lies in the opposite plane to the CH2OH substituent of the same glucose ring, this bond is characterized as α. If this glycosidic bond occurred in the same plane it would be represented as a β(1→4) bond and then the resulting molecule would be cellobiose rather than maltose.

The anomeric carbon (C1) of the other glucose molecule hangs in the direction of the bond to the hydroxyl group relative to the CH2OH substituent of the similar glucose ring. This carbon is not complex in the glycosidic bond and can be an α- or β-terminal group. isomer. Therefore, it results in the formation of beta-maltose or alpha-maltose.

Isomaltose is an isomer of maltose and is similar to maltose. But in isomaltose, the α(1→4) bond is replaced by α(1→6) bond.

Production of maltose

With the advancement of food technology, maltose has been produced commercially on a large scale. It is used in the food industry for its sweetening properties and as an ingredient in various foods.

The name maltose comes from the word "malt". The suffix "ose" is added to describe that maltose belongs to the sugar class. "ose" represents the important biochemical series of glucose chains. It is named after the germination process, an example of this reaction found in germinating seeds.

It is formed by the digestion of starch by amylase. The preparation of maltose is accomplished by hydrolysis of starch in the presence of amylase. Starch is heated with a strong acid for a few minutes, breaking down to form two glucose molecules. With the help of maltase, it is converted into glucose. This glucose is used in biological processes.

It is also produced when beta-amylase breaks down starch by removing two glucose units at the same time.

Properties of maltose

Maltose is also a reducing sugar similar to glucose. The reason is that the two glucose units are connected, so when the ring is opened, one of the glucose units can acquire an aldehyde group. The properties of the glycosidic bond are unlikely to exist with other units of the glucose molecule.

Maltase can break down this glycosidic bond. This enzyme catalyzes the hydrolysis step of glycosidic bonds. As a result, glucose units are formed.

It exhibits mutarotation in aqueous solution; the two forms exist in equilibrium in aqueous solution.

Depending on the concentration, maltose is almost 30-60% as sweet as sugar. Additionally, a 10% maltose solution is 35% as sweet as sucrose.

Origin and assimilation of maltose

Maltose is the component of "malt". It is a substance obtained by converting grains into malted grains. Grains can be converted into sprouts by soaking them in water. Afterwards, the stopped germination process is dried with hot air. In this way, enzymes are produced to break down the starch and protein in the grains.

It is a partially hydrolyzed starch product similar to corn syrup, maltodextrin and acid dilute starch.

It is broken down by various maltase enzymes in the human body to provide two glucose molecular units. These glucose molecules can be broken down further and provide energy, or they can be stored as glycogen.

Sucrose intolerance in humans occurs due to a deficiency of the enzyme invertase-isomaltase. But because there are four different maltase enzymes, complete maltose deviations are extremely rare.

Fruit is another common source of maltose in the diet, especially pears and peaches.

Uses of maltose

  • Sweetener: Over time, maltose found its way into culinary applications beyond brewing. Its sweetening properties make it valuable for a variety of dishes and sweets.
  • Maltose syrup: Maltose syrup is a concentrated form of maltose that has become a popular sweetener and ingredient in the production of candy, baked goods, and Asian sauces.
  • Sweet Treats: Maltose has always been a key ingredient in traditional Chinese sweets. It is used in the preparation of foods such as maltose confectionery (dragon sugar) and maltose-coated fruits and nuts.
  • Use in brewing: Maltose is an important ingredient in brewing, providing the fermentable sugars needed by yeast to produce alcohol.

Maltose and health

Although maltose provides energy as a carbohydrate, it is important to consume it in moderation. Excessive consumption of added sugars, including maltose, has been linked to health problems.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
哪些職業對健康影響最大?科學與現實的分析

哪些職業對健康影響最大?科學與現實的分析

在現代社會中,工作佔據了人們生命中相當大的一部分。然而,不同職業對健康的風險並不相同。一些工作性質或環境,會顯著增加慢性病、心理壓力、甚至縮短壽命的風險。以下從科學研究與醫學角度,探討幾類對健康損害較大的職業,並附上相關統計數據。

電擊槍的機制與對人體健康影響

電擊槍的機制與對人體健康影響

在現代執法中,警察常使用所謂「非致命性武器」(less-lethal weapons),其中最廣為人知的便是 電擊槍(Taser)。電擊槍的設計初衷是提供一種介於徒手制服與槍械之間的選擇,藉由暫時性電擊使嫌疑人失去行動能力,以降低致命暴力發生的風險。然而,電擊槍並非完全無害,背後涉及的電流機制與人體生理反應值得深入探討。

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

腫瘤治療的新挑戰 近十年來,免疫檢查點抑制劑(Immune Checkpoint Inhibitors, ICIs)改變咗癌症治療格局。當中 PD-1/PD-L1 抑制劑 已經成為多種腫瘤的一線或二線療法,而 VEGF 抑制劑 亦係抗血管生成治療嘅核心藥物。然而,臨床數據顯示,雖然 PD-(L...
疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛一直是全球道路安全的重要議題。許多人將疲勞視為「只是累了」,但科學研究表明,當人處於極度疲倦時,大腦功能下降的程度可與酒精中毒相當。不僅如此,長時間駕駛還會對身體健康造成慢性負擔。隨著科技發展,越來越多可穿戴裝置被設計用來協助監測疲勞狀態,其中,日本 Medirom 公司開發的 REMONY 裝置近日獲得國土交通省(MLIT)認證,成為市場矚目的焦點。本文將先探討疲勞駕駛的健康風險,然後客觀分析 REMONY 裝置的技術特點與潛力。

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟皮膚為何容易出現問題? 腳跟係身體承受最大壓力嘅部位之一。每日行走、站立,腳跟長期摩擦同受壓,如果缺乏適當護理,就會導致角質層過度增厚、乾燥同龜裂。當角質層愈厚,皮膚顏色會慢慢變得偏黃,甚至暗啡。 造成腳跟黃、裂、脫皮的常見原因 角質層增厚長期行走或穿硬底鞋,令腳跟角質層積聚過多,顏色...
Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 幾乎已經變成日常生活不可或缺嘅一部分。無論係屋企、公司、學校,甚至咖啡店同巴士,都有無線網絡覆蓋。但好多讀者都會擔心:「成日浸喺 Wi-Fi 入面,會唔會慢慢影響身體健康?會唔會致癌?會唔會令我失眠或者精神差?」 今篇文章會由淺入深,帶大家了解 Wi-Fi 嘅電磁波特性、科學研究結...
長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

好多人每日要長時間坐喺辦公室、電腦前面,或者瞓覺時維持同一個姿勢。結果往往出現腰酸背痛、手腳麻痺,甚至覺得關節「鎖住」郁唔到。久坐傷身腳麻痺點解長時間坐姿影響健康,都係大家經常搜尋嘅問題。今次我哋就一齊睇下背後原因。

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症最令人畏懼的地方,不單在於原發腫瘤本身,而是它能夠 轉移(Metastasis) —— 由原本的器官擴散至身體其他部位。事實上,大多數癌症致命的原因,並非來自腫瘤的「原居地」,而是因為它在其他重要器官(如腦、肝、骨、肺)形成了新的腫瘤。

腦癌種類全面介紹|常見類型與特徵

腦癌種類全面介紹|常見類型與特徵

腦癌(Brain Cancer)泛指源自腦部或蔓延至腦部的惡性腫瘤。臨床上可分為兩大類: 原發性腦腫瘤(Primary Brain Tumors):由腦部細胞本身變異而成。 繼發性腦腫瘤(Secondary / Metastatic Brain Tumors):由其他器官的癌細胞(如肺...