木犀草素: 來源、益處與用途

Luteolin (Luteolin) Luteolin belongs to a large class of substances called flavonoids , which are secondary metabolites characterized by a diphenylpropane structure (C6–C3–C6) and can be divided into many groups. Luteolin is a tetrahydroxyflavone with four hydroxyl groups located at the 3, 4, 5 and 7 positions.

It is a naturally occurring flavonoid compound found in a variety of plants, fruits and vegetables. It belongs to the flavonoid class of flavonoids, known for its antioxidant and anti-inflammatory properties.

  • CAS No. 491-70-3

History and background

It is a flavonoid (3',4',5,7-tetrahydroxyflavone) with a yellow crystalline appearance. Due to its color, the luteolin-containing plant Mignonette has been used as a source of dye since the first millennium BC. French chemist Michel Eugène Chevreul was the first to isolate luteolin in 1829, but the correct structure was proposed by British chemist Arthur George Perkin in 1896.

Luteolin is a substance found in a variety of plant species, including those used in traditional medicine to treat a variety of illnesses. It is widely distributed in the plant kingdom and has been extensively studied for its pharmacological properties such as anti-inflammatory, antioxidant, and neuroprotective properties. Luteolin glycosides have been found in fossils of species in the family Ulmaceae that date from 36 to 25 million years ago. More than 350 plant species have been found to contain luteolin and/or its various glycoside forms.

source

plant

Luteolin is found in a variety of plants, fruits, and vegetables commonly found in the human diet, including celery, parsley, thyme, chamomile, broccoli, carrots, peppers, and citrus fruits.

fruits and vegetables

It is also found in fruits such as oranges, lemons and olive oil, as well as vegetables such as broccoli, onions and spinach.

health benefits

antioxidant activity

Luteolin acts as an antioxidant and helps neutralize harmful free radicals in the body, protecting cells from oxidative stress.

Like most flavonoids, luteolin can act as an antioxidant or pro-oxidant. Studies have shown that it can induce ROS, and its accumulation plays a key role in inhibiting NF-κB and enhancing JNK. It does not involve mitochondrial electron transport and may be achieved by inhibiting superoxide dismutase activity. These effects sensitize cancer cells to undergo TNF-induced apoptosis.

anti-inflammatory properties

chronic inflammation

Acute inflammation is an acute form of inflammation caused by cell damage caused by the presence of pathogenic microorganisms or harmful stimuli. After a reasonable period of time, under normal circumstances, the irritation disappears, tissue healing ceases, and inflammation and associated symptoms, including pain, cease. Multiple factors, including environmental and genetic parameters, contribute to the maintenance of chronic inflammation activated by DAMPs. Chronic, unresolved inflammation leads to a progressive deterioration in the structure and function of tissues and organs. If the pathology is mild or chronic inflammation, pain may be one of the symptoms. Chronic diseases such as osteoarthritis, rheumatoid arthritis, and inflammatory bowel disease are characterized by pathological and chronic pain. This type of pain results from activation of nociceptors that stimulate inflammatory mediators at the inflamed site, causing a shift in activation threshold from a high to a low activation threshold. In the absence of a cure, anti-inflammation is the gold standard approach to treating chronic inflammation to achieve long-term relief and pain relief.

Anti-inflammatory properties of luteolin in chronic inflammatory pain

Research shows that luteolin may help reduce inflammation by inhibiting inflammatory pathways and cytokines, which may have benefits for conditions such as arthritis and inflammatory diseases.

Luteolin exhibits pleiotropic effects on various signaling pathways involved in chronic inflammation, and its safety profile makes it a promising option as an adjunctive treatment to suppress inflammation and associated pain. Its effects are mainly due to the inhibition of several biochemical pathways and inflammatory mediators associated with a variety of chronic diseases, of which persistent inflammation is a common feature of the pathogenesis.

The regulatory effect of luteolin on inflammatory mediators (such as cytokines IL-6, IL-1β and TNF-α, enzyme COX-2 and prostaglandin PGE). In addition, luteolin inhibits the increased expression of inducible nitric oxide synthase (iNOS) and metalloproteinases (MMPs) under chronic inflammatory conditions. However, in chronic inflammation, the synthase iNOS synthesizes an inducible form of nitric oxide, leading to overexpression of nitric oxide up to 1,000-fold the physiological production. In particular, increased expression of various types of MMPs is associated with tissue remodeling and destruction under chronic inflammatory conditions. Among them, three pilin domains include nuclear factor kappa B (NF-κB), Janus kinase signal transducer and activator of transcription (JAK-STAT), and inflammasome NOD-like receptors (NLR family). (NLRP3) plays an important role. Role in gene expression of inflammation. NF-κB is considered a key transcription factor in acute and chronic inflammation and is involved in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, iNOS, and metalloproteinases (MMPs). JAK-STAT is another signaling pathway whose activation has been implicated in autoimmune and inflammatory diseases. It is used as a signaling pathway for cytokines that promote inflammatory responses and is associated with activation of the NF-κB signaling pathway. Research shows that luteolin can actively modulate these signaling pathways during inflammation.

Based on its multi-target anti-inflammatory effects, luteolin appears to be a very promising natural drug to inhibit abnormal inflammatory responses in chronic inflammatory conditions.

Oxidative stress is closely related to inflammation. In fact, there is evidence of a bidirectional relationship between free radical production and inflammation. Chronic inflammation is characterized by oxidative stress and vice versa. Excessive production of free radicals leads to chronic inflammation: they cause damage to major components of cells such as DNA, lipids and proteins, and stimulate inflammatory processes such as NF-κB. Luteolin exhibits powerful antioxidant properties through its ability to destroy free radicals and promote cellular antioxidant defenses (direct action).

Neuroprotective effect

Some studies suggest that luteolin may have neuroprotective properties, support brain health, and may reduce the risk of neurodegenerative diseases such as Alzheimer's disease.

neuropathic pain

Neuropathic pain is a type of pain caused by injury or disease of the somatosensory nervous system. Although the pathogenic mechanisms are not fully understood, increasing evidence suggests that nitrosative and oxidative stress, as well as nerve inflammation, play important roles in neuropathic pain. Oxidative stress and nitrosative stress represent the loss of intracellular redox balance due to high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. Cells typically produce superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and heme oxygenase 1 (HO-1). Neurons have weaker antioxidant defense mechanisms and higher lipid content than other cell types, making them more susceptible to nitrooxidative damage. Therefore, nitro-oxidative stress in neurons is considered to be a major cause of neuropathic pain. Furthermore, ROS appear to contribute to the activation of the ion channel TRP, which is highly expressed in nociceptor neurons and plays an important role in pain transmission. In addition to damage directly caused by ROS and NOS, nerve inflammation appears to be an important process in the development and maintenance of neuropathic pain. Neuroinflammation is an inflammation caused by damage to nerve tissue in the peripheral or central nervous system. In addition, microglia and stellate cells in the dorsal horn of the spine are activated, contributing to the release of inflammatory mediators in the central nervous system and increasing excitability. Inflammation and nitrosative stress should not be considered separate processes in neuropathic pain. Rather, it's because they work together in a two-way relationship. For example, the transcription factor NF-κB is one of the most typical examples of inflammatory biochemical pathways. It can be activated by ROS/RNS to increase the expression of inflammatory mediators, thereby increasing the expression of various nitrosative substances. Medical options for treating neuropathic pain treat pain as a symptom rather than inhibiting its pathogenesis. First-line medications include tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, gabapentin, and pregabalin. Effective treatment of neuropathic pain can be difficult due to the lack of efficacy of these drugs and the serious side effects associated with long-term use. Newer, safer methods can be adopted in a variety of ways to more effectively prevent nitrosative damage while inhibiting neuroinflammation.

Neuroprotective and analgesic effects of luteolin on neuropathic pain

Luteolin is very effective in combating neuropathic pain because of its effects on two cellular processes involved in neuropathy: oxidative stress and inflammation. Its powerful antioxidant properties, effects on nerve inflammation, and pain relief make luteolin an effective brain treatment. Additionally, studies have shown that luteolin can enhance endogenous antioxidant capacity. As we said before, direct antioxidants may not be as effective as expected, and recent research has shifted toward drugs that activate antioxidant processes rather than interfere with free radicals. Luteolin appears to do this by activating the key antioxidant transcription factor Nrf2. In various clinical studies, luteolin has been shown to have pleiotropic effects on diseases associated with neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. In addition, the main symptoms of luteolin effects are anti-inflammatory and antioxidant symptoms, including inhibition of NF-κB and induction of Nrf2. Although the neuroprotective effects of luteolin on the central nervous system have been well established through in vitro and in vivo studies, its effects on peripheral nerve inflammation are unclear. Certainly, the few but important in vivo studies on the effects of luteolin on neuropathic pain are very encouraging.

Luteolin inhibits mechanical and cold hyperalgesia in an animal model of neuropathic pain in a dose-dependent manner. Daily intraperitoneal injection of luteolin (50 mg/kg, 100 mg/kg, 200 mg/kg) can activate Nrf2, increase the activities of antioxidant enzymes SOD, GST, GPx and CAT, and reduce the production of ROS. Luteolin treatment improves neurological function (measured by increases in movement and conduction velocity). Additionally, mechanical withdrawal threshold, cold, and sweating were increased, showing that luteolin can reduce hyperalgesia and allodynia. All results were dose-dependent, with 100 mg/kg and 200 mg/kg luteolin showing better results than the 50 mg/kg dose. Luteolin capsules (5 mg/kg and 10 mg/kg body weight) significantly reduce neuropathic pain in multiple animal models. Intraperitoneal injection of luteolin improved Lewis lung carcinoma (LLC)-induced bone pain in rats (50 mg/kg significantly improved pain behavior compared with 1 mg/kg and 10 mg/kg).

cardiovascular health

Luteolin may help promote cardiovascular health by improving blood flow, reducing inflammation of blood vessels, and lowering blood pressure.

Anti-cancer potential

Preliminary research suggests that luteolin may have anti-cancer properties, inhibiting the growth of cancer cells and inducing apoptosis in some types of cancer.

Luteolin sensitizes cancer cells to treatment-induced cytotoxicity by inhibiting cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, NF-κB, and X-linked inhibitor of apoptosis protein (XIAP). It also stimulates the apoptotic pathway induced by the tumor suppressor protein p53. These properties suggest that luteolin may be an anticancer agent, but epidemiological studies also suggest that this compound has cancer-preventive properties, with significant inhibitory effects on tumor growth in squamous cell carcinoma of the head and neck (SCCHN).

Purpose and application

Dietary Supplements

Luteolin is available in supplement form, usually derived from plant sources such as celery seed extract or chamomile.

functional food

Certain foods, such as drinks, snacks and health bars, may have luteolin added to enhance their potential health benefits.

Topical skin care products

Luteolin is sometimes added to skin care products for its antioxidant and anti-inflammatory properties, which can benefit skin health and protect against environmental damage.

Precautions

bioavailability

The bioavailability of luteolin from dietary sources may vary, and more research is needed to understand its absorption and metabolism in the body.

Like many dietary compounds, luteolin shows low bioavailability due to poor water solubility, and to address this issue, luteolin nanoparticles are being developed.

interaction

Taking luteolin as a dietary supplement can be dangerous because it can interact with certain medications, such as blood thinners, and may cause side effects such as nausea, vomiting, and diarrhea. It may also cause allergic reactions in some people and may interact with other supplements or medications. It is important to consult a doctor before taking any dietary supplement, especially if you are taking any medications or have any underlying health conditions.

natural food sources

Including luteolin-rich foods (such as fruits, vegetables, and herbs) into your diet is generally considered safe and may provide additional nutritional benefits over and above those of luteolin alone.

How luteolin is regulated around the world

Regulation of luteolin varies around the world. In the United States, luteolin is classified as a dietary supplement and regulated by the Food and Drug Administration (FDA). In the EU, luteolin is classified as a food supplement and regulated by the European Food Safety Authority (EFSA). In Canada, luteolin is classified as a natural health product and regulated by Health Canada. In Australia, luteolin is classified as a complementary medicine and regulated by the Therapeutic Goods Administration (TGA).

in conclusion

While luteolin has shown promising health benefits in preclinical studies, further research, including human clinical trials, is needed to fully understand its potential therapeutic applications and optimal dosage. As with any dietary supplement, luteolin supplements must be used under the guidance of a healthcare provider for personalized advice and monitoring.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
經痛治療點解咁多年都冇突破?最新方法、本地現況與未來方向

經痛治療點解咁多年都冇突破?最新方法、本地現況與未來方向

幾乎一半嘅世界人口,每個月都要面對一次——月經同經痛。由青春期到更年期,呢段時間長達三十幾年。雖然經痛唔係致命疾病,但對好多女性嚟講,每個月都係一次痛苦嘅循環,影響工作、學業同生活質素 [1]。咁問題嚟喇:點解咁多年嚟,經痛治療仲係停留喺熱水袋同布洛芬(ibuprofen)?

Celecoxib(西樂葆)介紹 — 藥理、歷史背景與臨床試驗

Celecoxib(西樂葆)介紹 — 藥理、歷史背景與臨床試驗

1. 藥物簡介與臨床用途 Celecoxib(商品名 Celebrex 等)係一種選擇性 COX-2 抑制劑,屬非類固醇抗炎藥(NSAID)。COX-2 喺炎症反應中會誘導前列腺素生成,從而引發疼痛及發炎;而 Celecoxib 有效抑制 COX-2,但對 COX-1 影響較少,因此相對常見 ...
用粟粉醃肉有乜科學根據?揭開中菜「滑肉」嘅秘密

用粟粉醃肉有乜科學根據?揭開中菜「滑肉」嘅秘密

前言:點解中餐炒肉咁滑? 好多香港人炒肉嘅時候都會發現,餐廳啲雞絲牛柳炒出嚟特別滑溜、唔鞋口。呢個秘密,唔喺高級食材,而係一個平凡但強大嘅材料——粟粉(Cornstarch)。 呢種技巧叫做**「走油前醃」或「滑油醃肉法」(Velveting)**,係中餐獨有技術之一,主要靠粟粉、蛋白、調味料...
咩係三價鐵(Fe³⁺)同二價鐵(Fe²⁺)?

咩係三價鐵(Fe³⁺)同二價鐵(Fe²⁺)?

當我哋講「鐵質」時,唔止係話有冇攝取足夠,而係講緊鐵喺人體內唔同形態(尤其係三價鐵 Fe³⁺ 同二價鐵 Fe²⁺)點樣被吸收、轉化、運輸同儲存,呢啲都深深影響生物可利用率

全面解構低鐵原因、病理機制及影響

全面解構低鐵原因、病理機制及影響

低鐵唔止係營養問題,仲可能係身體慢性警號

鐵質(iron)係人體不可或缺嘅微量元素,主要負責攜帶氧氣嘅血紅素(hemoglobin)製造、能量代謝、免疫調節等。當鐵質長期攝取不足、吸收差、或失去過多,就會導致「低鐵」(iron deficiency)甚至發展成「缺鐵性貧血」(iron deficiency anemia)。本文將從臨床醫學與分子生理角度,深入探討低鐵嘅成因、病理機制、生物轉化過程,以及其對人體造成嘅連鎖影響。

Obefazimod(ABX464):潰瘍性結腸炎新藥研究、作用機制與研發進展

Obefazimod(ABX464):潰瘍性結腸炎新藥研究、作用機制與研發進展

Obefazimod(又名 ABX464)係由法國生物科技公司 Abivax 開發嘅口服小分子創新藥,目標治療慢性發炎性腸道疾病(IBD),特別係潰瘍性結腸炎(UC)同克羅恩氏病(CD)患者。

夢遺係唔係一定關性事?

夢遺係唔係一定關性事?

夢遺,即係在無意識之下於睡眠中射精,係一種常見於青春期男生甚至成年男性身上的自然生理現象。夢遺唔等於一定發生性夢,也唔等於有性慾過強。它與睡眠週期中快速動眼期(REM sleep)嘅勃起模式有關,亦可能反映正常的荷爾蒙波動及精液排出節律。 咩係夢遺? 夢遺(nocturnal emission...
唔凍都會打冷震?

唔凍都會打冷震?

打冷震(shivering)唔一定因為天氣凍,喺情緒波動、發燒初期、焦慮、緊張等情況下都可以出現。打冷震係一種由大腦下視丘控制嘅「非意識性肌肉收縮」,目的係維持或調節核心體溫或應對突發壓力。了解打冷震背後嘅神經與體溫調節原理,可以幫我哋區分「正常生理反應」同「潛在疾病警號」。 打冷震係乜回事...
一緊張就流手汗?

一緊張就流手汗?

手掌汗腺主要受交感神經系統控制。當人面對壓力、驚訝、社交場合等刺激時,大腦會啟動「戰鬥或逃跑反應」,促使手掌、腳底等部位產生明顯出汗。這種情況屬於精神性出汗,與溫度無直接關係,係身體對外在壓力的自然反應。