脈搏血氧儀

Pulse oximetry is a non-invasive way to monitor a person's blood oxygen saturation. Peripheral oxygen saturation (SPÒ 2) readings are typically accurate within 2% of arterial blood gas analysis, which is more ideal for reading arterial oxygen saturation. But the correlation between the two is good enough, so a safe, convenient, non-invasive, and cheap pulse oximetry measurement method is valuable for oxygen saturation measurement in clinical use.

The most common method is transmission pulse oximetry. In this method, the sensor device is placed on a thin part of the patient's body, usually the fingertips or earlobes, or a baby's feet. Fingertips and earlobes have higher blood flow than other tissues, which aids in heat transfer. The device directs two wavelengths of light through the body part to a photodetector. It measures the change in absorbance at each wavelength, thereby determining the absorbance caused solely by pulsating arterial blood.


Reflection pulse oximetry is a less common alternative to transmission pulse oximetry. This method does not require thin sections of the human body, making it ideal for general applications such as the feet, forehead, and chest, but it does have some limitations. Due to impaired venous return to the heart, vasodilation and venous blood pooling in the head can cause arterial and venous pulsations in the forehead area to combine and lead to false SpO2 results. This situation occurs while undergoing anesthesia with endotracheal intubation and mechanical ventilation or while the patient is in the head-down position.

medical use

A pulse oximeter is a medical device that indirectly monitors the oxygen saturation of a patient's blood (as opposed to measuring oxygen saturation directly from a blood sample) and changes in skin blood volume, producing a photoplethysmogram that can be further processed into other measurements. .Pulse oximeters can be integrated into multi-parameter patient monitors. Most monitors also display pulse rate. Portable battery-operated pulse oximeters can also be used for transport or home blood oxygen monitoring.

advantage

Pulse oximeters are particularly convenient for non-invasive, continuous measurement of blood oxygen saturation. In contrast, blood gas levels must be measured in a laboratory from a blood sample drawn. Pulse oximetry can be used in any setting where patient oxygenation is unstable, including critical care, surgery, recovery, emergency and hospital ward settings, pilots on unpressurized aircraft, to assess oxygenation in any patient, and to determine supplementation Oxygen availability or need. Although a pulse oximeter is used to monitor oxygenation, it cannot determine oxygen metabolism, or the amount of oxygen the patient is using. To do this, carbon dioxide (CO2) levels also need to be measured. It may also be used to detect abnormalities in ventilation. However, the use of pulse oximetry to detect hypoventilation is compromised by the use of supplemental oxygen because respiratory dysfunction can only be reliably detected when the patient is breathing room air. Therefore, if the patient is able to maintain adequate oxygenation on room air, routine supplemental oxygen may not be necessary as this may result in undetectable hypoventilation.

Due to its simplicity of use and ability to provide continuous and instantaneous oxygen saturation values, pulse oximeters are vital in emergency medicine and are useful for respiratory or heart problems especially COPD or for diagnosing some sleep disorders such as apnea and breathing insufficient. For people with obstructive sleep apnea, pulse oximeter readings will be in the 70-90% range most of the time they are trying to fall asleep.

Portable battery-operated pulse oximeters are useful for pilots operating in non-pressurized aircraft requiring supplemental oxygen above 10,000 feet (3,000 meters) or 12,500 feet (3,800 meters) in the United States. Portable pulse oximeters are also useful for climbers and athletes whose oxygen levels may decrease at high altitudes or during exercise. Some portable pulse oximeters use software to chart a patient's blood oxygen and pulse as a reminder to check blood oxygen levels.

Advances in connectivity allow patients to continuously monitor their blood oxygen saturation without cables connected to hospital monitors, without sacrificing the flow of patient data back to bedside monitors and centralized patient monitoring systems.

In COVID-19 patients, pulse oximetry can help detect silent hypoxia early, where the patient still looks and feels comfortable, but their SpO2 is very low. This happens to patients in the hospital or at home. Low SpO2 may indicate severe pneumonia related to COVID-19, requiring a ventilator.

limit

Pulse oximetry only measures hemoglobin saturation, not ventilation, and is not a complete measurement of respiratory function. It is not a substitute for blood gases tested in the laboratory because it does not show base deficiency, carbon dioxide levels, blood pH, or bicarbonate (HCO 3 - ) concentration. Oxygen metabolism can be easily measured by monitoring exhaled CO2 , but saturation data provides no information about blood oxygen content. Most of the oxygen in the blood is carried by hemoglobin; in severe anemia, there is less hemoglobin in the blood, and although the hemoglobin is saturated, it still cannot carry as much oxygen.

Because pulse oximeter devices are calibrated in healthy subjects, accuracy is poor in critically ill patients and premature infants.

Falsely low readings may be caused by hypoperfusion of the limb being monitored (usually due to cold limb, or vasoconstriction due to use of vasopressors); incorrect sensor application; highly calloused skin; or movement ( such as shivering), especially during periods of low perfusion. To ensure accuracy, the sensor should return stable pulses and/or pulse waveforms. Pulse oximetry technology varies in its ability to provide accurate data during exercise and low perfusion conditions.

Obesity, hypotension (low blood pressure), and some hemoglobin variations can reduce the accuracy of the results. Some home pulse oximeters have very low sampling rates, which can significantly underestimate drops in blood oxygen levels. ] The accuracy of pulse oximetry decreases significantly when readings fall below 80%.

Pulse oximetry is also not a complete measure of circulating oxygen sufficiency. If there is insufficient blood flow or hemoglobin in the blood (anemia), the tissues will be starved of oxygen despite high arterial oxygen saturation.

Because pulse oximeters only measure the percentage of bound hemoglobin, false high or false low readings can occur when hemoglobin is bound to something other than oxygen:

  • Hemoglobin has a higher affinity for carbon monoxide than for oxygen, and high readings may occur even though the patient is actually hypoxemic. In the case of carbon monoxide poisoning, this inaccuracy may delay recognition of hypoxia (low cellular oxygen levels).
  • Readings are higher in cyanide poisoning because it reduces the extraction of oxygen from arterial blood. In this case, there is no error in the reading because arterial blood oxygenation is indeed high in early cyanide poisoning.
  • In the mid-1980s, methemoglobinemia was characterized as causing pulse oximetry readings.
  • COPD [especially chronic bronchitis] may cause false readings.

One non-invasive method that allows continuous measurement of hemoglobin abnormalities is the pulse oximeter, manufactured in 2005 by Masimo. By using additional wavelengths, it provides clinicians with a way to measure hemoglobin abnormalities, carboxyhemoglobin and methemoglobin, as well as total hemoglobin.

Common pulse oximeter devices may have higher error rates in adults with darker skin tones, research suggests, raising concerns that inaccuracies in pulse oximeter measurements could be exacerbated in countries with racially diverse populations such as the United States. of systemic racism. Pulse oximetry is used to screen for sleep apnea and other types of sleep breathing disorders, which are more common among minorities in the United States.

equipment

In addition to pulse oximeters for professional use, there are many inexpensive "consumer" models. Opinions about the reliability of consumer oximeters vary; a typical comment is "Study data on home monitors are mixed, but they tend to be accurate within a few percentage points." Some smartwatches with activity tracking capabilities include an oximeter feature.

mobile application

Mobile app pulse oximeters use a flashlight and phone camera instead of the infrared light used by traditional pulse oximeters. However, the app cannot produce accurate readings because the camera cannot measure light reflection at both wavelengths, so oxygen saturation readings obtained through the app on a smartphone are inconsistent with clinical use. In fact, one study shows these are unreliable. So even though pulse oximeters aren't perfect, they're still much more accurate than smartphone app pulse oximeters.

mechanism

A blood oxygen monitor shows the percentage of oxygen in the blood. More specifically, it measures the percentage of hemoglobin (the protein in the blood that carries oxygen) that is loaded. For patients without lung disease, the acceptable normal Sa O range is 95% to 99%. For people breathing room air at or near sea level, arterial pO 2 can be estimated from blood oxygen monitor "peripheral oxygen saturation" (SpO 2 ) readings.

Operation method

A typical pulse oximeter uses an electronic processor and a pair of small light-emitting diodes (LEDs) that face a photodiode through a translucent part of the patient's body (usually a fingertip or earlobe). One LED is red with a wavelength of 660 nm and the other is infrared with a wavelength of 940 nm. The absorption of light at these wavelengths differs significantly between oxygenated and deoxygenated blood. Oxygenated hemoglobin absorbs more infrared light and allows more red light to pass through. Deoxygenated hemoglobin allows more infrared light to pass through and absorbs more red light. The LEDs cycle sequentially, one on, then the other, and then off approximately 30 times per second, which allows the photodiodes to respond to red and infrared light separately and adjust to the ambient light baseline.

The amount of light transmitted (in other words, the amount of light that is not absorbed) is measured and a separate normalized signal is produced for each wavelength. These signals fluctuate over time because the amount of arterial blood present increases with each heartbeat. By subtracting the minimum transmitted light from the transmitted light at each wavelength, the effects of other tissues are corrected to generate a continuous signal for pulsatile arterial blood. The ratio of the red light measurement to the infrared light measurement (representing the ratio of oxyhemoglobin to deoxygenated hemoglobin) is then calculated by the processor and this ratio is then converted to SpO2 by the processor. Signal separation has other uses as well: typically the plethysmograph waveform representing the pulsatile signal ("volume wave") is displayed to visually display pulse and signal quality, and a numerical ratio between the pulsatile signal and baseline absorbance ("perfusion index") is available To assess perfusion.

Where HbO2 is oxyhemoglobin (oxyhemoglobin) and Hb is deoxygenated hemoglobin.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
牛肉與腸道微生態:人體點樣反應?

牛肉與腸道微生態:人體點樣反應?

牛肉進入身體之後會發生咩事? 食牛肉之後,身體會進入「高蛋白消化模式」: 胃部階段:胃酸(pH約2)與胃蛋白酶一齊將牛肉蛋白質分解成小分子胺基酸鏈。此時釋放「胃泌素(gastrin)」促進更多酸及酶分泌。 小腸階段:十二指腸接收食糜後,胰臟釋出胰蛋白酶、脂肪酶,肝臟釋出膽汁乳化脂肪。 ...
從嗜睡症、慢脈搏到米諾地爾 (Minoxidil) 的全身動力學

從嗜睡症、慢脈搏到米諾地爾 (Minoxidil) 的全身動力學

當身體進入「慢模式」——嗜睡症與自律神經的連結 嗜睡症(Narcolepsy)是一種大腦覺醒系統的紊亂,患者在日間容易突然進入睡眠狀態。但其實,嗜睡症不止影響「睡眠」,還會影響全身的 自律神經系統 (Autonomic Nervous System)。 自律神經負責調節: 心跳快慢(交感與...
降血壓,唔一定靠藥!了解身體機制,從生活開始調節

降血壓,唔一定靠藥!了解身體機制,從生活開始調節

高血壓唔係「年紀大」嘅專利,愈來愈多年輕人都有血壓偏高。其實,血壓高並非只係「壓力大」咁簡單,而係整個身體系統出問題:心臟、血管、腎臟、神經、荷爾蒙都有份參與。

原糖 vs 紅糖 vs 白糖:哪一種更健康?

原糖 vs 紅糖 vs 白糖:哪一種更健康?

日常生活中,我們常見的糖有「原糖」、「紅糖」與「白糖」。三者外觀、味道甚至用途都略有不同,但在營養與健康層面上又有幾大差異。本文將帶你深入了解它們的製作方式、特性與對身體的影響。

籃球係有氧運動嗎?— 一文睇清有氧同無氧運動嘅分別、好處同平衡之道

籃球係有氧運動嗎?— 一文睇清有氧同無氧運動嘅分別、好處同平衡之道

籃球係全球最受歡迎嘅運動之一,無論係街場隨意投籃、定係正式比賽,都可以幫助身體活動。但你有冇諗過,籃球到底屬於「有氧運動」定「無氧運動」?兩者又有咩分別?點樣玩先至最有益身體?

本文會同你用簡單角度拆解「有氧」同「無氧」嘅概念,並講解籃球點樣同時結合兩者,最後再分享點樣令你嘅籃球運動更健康、更有效。

男士禿頭對策:了解雄性禿與5%米諾地爾(Minoxidil)生髮原理

男士禿頭對策:了解雄性禿與5%米諾地爾(Minoxidil)生髮原理

雄性禿是什麼?為何只在頭頂出現? 好多男士年過25歲開始發現頂部頭髮越來越稀疏,但前額線卻似乎仍然正常,這情況其實非常典型。這種情況稱為 雄性禿 (Androgenetic Alopecia),是男性最常見的脫髮原因之一。 主要成因來自兩方面: 遺傳基因:如果父母其中一方有禿頭問題,後代的...
發現死老鼠點處理?

發現死老鼠點處理?

喺屋企、後花園、廚房甚至車房發現一隻「死老鼠」唔係罕見事,但好多屋主第一時間會「嚇親」或者「即刻掃走」。其實咁樣反而危險!
死鼠可能帶有漢他病毒、鈎端螺旋體病、沙門氏菌等病原體,一旦處理唔當,吸入塵埃或者接觸體液,都可能感染疾病。以下教你一套澳洲、香港、台灣都適用嘅安全清理步驟。

老鼠與大鼠的衛生影響:對人體與家居健康的真正威脅

老鼠與大鼠的衛生影響:對人體與家居健康的真正威脅

「老鼠」同「大鼠」雖然都屬於齧齒類,但牠哋對人類健康嘅影響有明顯分別。本文會詳細講解牠哋嘅衛生差異、疾病傳播途徑、同預防方法

無人機醫療配送:低空經濟下的香港新契機

無人機醫療配送:低空經濟下的香港新契機

  無人機醫療配送:低空經濟下的香港新契機 —— 從健康、醫療金融到商業模式的全球比較與啟示 在香港「低空經濟」監管沙盒下,無人機由數碼港跨海至長洲醫院,約 12 公里航線僅需 18–20 分鐘,相比傳統 45–65 分鐘大幅提速。本文聚焦醫療價值、醫療金融回報與商...