血壓計原理

Current blood pressure monitors use manual and digital meters, with different trade-offs in accuracy and convenience.

manual

A stethoscope is required for auscultation. Manual meters are best used by a trained practitioner, and while it is possible to obtain a basic reading by palpation alone, this will only produce systolic blood pressure.

  • Mercury sphygmomanometers are considered the gold standard. They indicate pressure as a column of mercury and do not require recalibration. Due to their accuracy, they are frequently used in drug clinical trials and clinical evaluation of high-risk patients, including pregnant women. A commonly used wall-mounted mercury sphygmomanometer is also called a Baumanometer .
  • Aneroid sphygmomanometers (mechanical ones with a dial) are common; unlike mercury manometers, they may require calibration checks. Aneroid sphygmomanometers are considered safer than mercury sphygmomanometers, although cheaper sphygmomanometers are less accurate. A major cause of deviations from calibration is mechanical shock. Aneroids mounted on walls or brackets are less susceptible to this particular problem.

digital

Recent advances in medical technology have paved the way for affordable, easy-to-use digital blood pressure monitors that anyone can use in the comfort of their own home, without the need for specialized knowledge or training.

Digital meters use oscillometric measurements and electronic calculations rather than auscultation. They may use manual or automatic inflation, but both types are electronic, can be operated easily without training, and can be used in noisy environments.

Digital blood pressure monitors use an inflatable balloon cuff, a battery-operated air pump, and a pressure sensor to sense artery wall vibrations to measure arterial blood pressure. This is called the oscillometric method .

They measure systolic and diastolic blood pressure by oscillometric detection, using a deformable membrane, using differential capacitance or differential piezoresistive measurements, and they include a microprocessor. They measure average blood pressure and pulse rate, and obtaining systolic and diastolic blood pressure is less accurate than manual meters, and calibration is an issue. In certain patients, such as those with arteriosclerosis, cardiac arrhythmias, preeclampsia , alternans , and paradoxical pulses , the use of digital oscillometric monitors may not be recommended because their calculations may not be corrected for these conditions. When used by trained personnel, it is best to use an analog sphygmomanometer.

Digital instruments may use cuffs, in order of accuracy and in reverse order of portability and convenience, placed around the upper arm, wrist, or fingers. Recently, a team of researchers at Michigan State University developed a smartphone-based device that uses the oscillometric method to estimate blood pressure. The oscillometric testing methods used give blood pressure readings that differ from those determined by auscultation and vary based on a number of factors such as pulse pressure, heart rate and arterial stiffness, although some instruments are said to also measure arterial stiffness, and some Detect irregular heartbeats.

Measurement technology

Digital blood pressure monitors use an air pump to inflate a cuff around the upper arm or wrist with enough pressure to prevent blood flow in the local aorta. This pressure is then gradually released using a digitally controlled solenoid valve until blood begins to flow through the artery.

The blood pressure measured by the pressure sensor at this time determines the systolic blood pressure. The pulse rate is also sensed at this time. Diastolic blood pressure is determined by measurements taken when blood flow is no longer restricted. This complete measurement cycle is automatically controlled by a microcontroller.

The signal from the pressure sensor is conditioned by an instrumentation amplifier before data conversion by an analog-to-digital converter (ADC). Systolic blood pressure, diastolic blood pressure, and pulse rate are then calculated in the digital domain using algorithms appropriate for the type of monitor and sensor used. The resulting systolic blood pressure, diastolic blood pressure, and pulse rate measurements are displayed on a liquid crystal display (LCD), time-stamped, and stored in non-volatile memory.

operate

Medical student measures brachial artery blood pressure

In humans, the cuff is typically placed smoothly and snugly around the upper arm, at about the same vertical height as the heart, while the subject is seated and supporting the arm. Other placement locations depend on the species and may include flippers or tails. Choosing the correct size cuff for the patient is critical. A cuff that is too small will result in too high a pressure, while a cuff that is too large will result in too low a pressure. For clinical measurements, both arms are typically measured and recorded during the initial consultation to determine if the pressure in one arm is significantly higher than the other. A difference of 10 mm Hg may be a sign of aortic coarctation. If the arms have different readings, the higher reading arm will be used for subsequent readings. The cuff is inflated until the artery is completely occluded.

Using a hand tool, with a stethoscope to the brachial artery, the examiner slowly releases pressure on the cuff at a rate of approximately 2 mm per heart beat. As the pressure in the cuff drops, a "whooshing" or popping sound is heard as blood flow starts flowing again in the artery. The pressure at which this sound begins is recorded and recorded as systolic pressure. Release the cuff pressure further until the sound is no longer heard. This is recorded as diastolic blood pressure. In noisy environments where auscultation is not possible, systolic blood pressure can be read alone by releasing pressure until a radial pulse is palpated. In veterinary medicine, auscultation is rarely useful and palpation or visualization of the pulse distal to the sphygmomanometer is used to detect systolic blood pressure.

Digital instruments use a cuff, which, depending on the instrument, can be placed around the upper arm, wrist, or fingers, and in all cases is raised to the same height as the heart. They inflated the cuff and gradually lowered the pressure in the same way as a manual meter, and measured blood pressure by the oscillometric method.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
Transform Your Home with the Philips Smart 1000i Air Purifier: Allergy Relief Meets Smart Living

Transform Your Home with the Philips Smart 1000i Air Purifier: Allergy Relief Meets Smart Living

In today’s fast-paced world, where indoor air quality often goes unnoticed, the Philips Air Purifier Smart 1000i Series offers a breath of fresh ai...
皮質醇管理:如何控制皮質醇?我們能夠自行管理或調節劑量嗎?

皮質醇管理:如何控制皮質醇?我們能夠自行管理或調節劑量嗎?

皮質醇是一種在壓力反應中發揮重要作用的激素,適量的皮質醇可以幫助我們應對壓力和維持健康。然而,過量或長期的高皮質醇水平可能會對身體帶來負面影響。以下我們將探討如何控制和管理皮質醇,包括自然方法、藥物干預、以及測量皮質醇的方式。 1. 自然方法調節皮質醇 壓力管理技術:研究顯示,冥想、深呼吸...
皮質醇是什麼?它如何影響我們的身體與日常生活?

皮質醇是什麼?它如何影響我們的身體與日常生活?

皮質醇(Cortisol)是一種由腎上腺分泌的激素,通常被稱為「壓力荷爾蒙」。它的主要功能是幫助身體應對壓力情境,並且在多種生理過程中扮演重要角色。皮質醇的釋放受腦部下丘腦-垂體-腎上腺軸(HPA軸)控制,這是一個調節人體反應於壓力的系統。 皮質醇對身體的影響 當我們處於壓力下時,皮質...
為什麼我們在緊張時總是忍不住吃零食?科學解密壓力性飲食行為

為什麼我們在緊張時總是忍不住吃零食?科學解密壓力性飲食行為

當人們感到緊張或壓力時,經常會無意識地吃零食,這種行為主要涉及大腦的多巴胺系統、情緒反應以及身體的生理需求。以下是背後的幾個主要原因: 壓力荷爾蒙的影響:壓力會觸發皮質醇的釋放,這種壓力激素會引發人們對高糖和高脂肪食物的渴望。這些食物能帶來短暫的愉悅感,因為它們能刺激大腦分泌多巴胺,讓人感...
光學治療濕疹 - 全面總結

光學治療濕疹 - 全面總結

簡介 光療使用光波來治療某些皮膚問題。皮膚會暴露於紫外線 (UV) 光下一段設定的時間。光療利用人造的紫外線光源,紫外線也來自陽光。當與一種叫做甲氧補骨脂素的藥物一起使用時,這個程序稱為 PUVA 光療。 紫外線光能夠抑制皮膚中的免疫系統細胞,對於因免疫系統過度反應引起的皮膚問題有幫助。可以使...
什麼是「操縱者」?

什麼是「操縱者」?

操縱者,也可以說成「擅用手段的人」,「心機重的人」。操縱者利用欺騙、影響或者其他形式的心理操控來控制或影響他人,以達到自己的目標。他們的行為通常包含使用隱蔽、間接或偷偷摸摸的手法來獲得他們想要的東西,往往是以犧牲他人為代價。以下是一些常見的特徵和手段: 欺騙: 他們可能會說謊或扭曲事實來誤...
什麼是肌肉抽搐?你需要去看醫生嗎?

什麼是肌肉抽搐?你需要去看醫生嗎?

肌肉抽搐,也稱為肌束顫動,是指身體各部分出現不自主的肌肉收縮。以下是肌肉抽搐的原因、症狀及管理方法的詳細介紹: 肌肉抽搐的原因 壓力和焦慮 高水平的壓力和焦慮會導致肌肉緊張和抽搐。身體對壓力的反應會觸發神經系統,導致肌肉不自主地收縮。 疲勞 過度使用或劇烈運動後的肌肉疲勞會導致肌...
蘋果與牙齒健康:保護牙齒的小技巧

Apples and Dental Health: Tips to Protect Your Teeth

Apples are widely loved for their rich nutritional content and refreshing taste. However, apples' acidic and sugary content may also have an impact...
蘋果籽的毒性:它們真的有毒嗎?

Apple Seed Toxicity: Are They Really Poisonous?

Apple seeds contain cyanogenic glycosides, compounds that break down in the body to produce cyanide, which has raised concerns about the toxicity o...