褪黑素

background

Melatonin is a biogenic amine found in animals, plants and microorganisms. In mammals, melatonin is produced by the pineal gland. The pineal gland is a small endocrine gland, about the size of a grain of rice and shaped like a pine cone, located in the center of the brain but outside the blood: the blood-brain barrier. Melatonin secretion increases in darkness and decreases in light, thereby regulating circadian rhythms in multiple biological functions including sleep-wake cycles. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering body temperature. Melatonin is also associated with the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also a potent antioxidant.

Most of the effects of melatonin are mediated through the binding and activation of melatonin receptors. People with autism spectrum disorder (ASD) may have lower than normal levels of melatonin. A 2008 study found that the unaffected parents of people with ASD also had lower melatonin levels, and that the defect was associated with low activity in the ASMT gene, which codes for the last enzyme in melatonin synthesis. Reductions in melatonin have also been implicated as a possible factor in the significant increase in cancer rates among night shift workers.

chemical formula

C 13 H 16 N 2 O 2

pharmacology

Orally used to treat jet lag, insomnia, shift work disorder, circadian rhythm disorders in blind people (evidence of efficacy), and benzodiazepine and nicotine withdrawal.

There is evidence that melatonin may be effective in treating circadian rhythm sleep disorders in blind children and adults. It has received FDA orphan drug status as an oral drug for this purpose. Many studies suggest that melatonin may be effective in treating sleep-wake cycle disorders in children and adolescents with mental retardation, autism, and other central nervous system disorders. It appears to reduce the time it takes for children with developmental disabilities, such as cerebral palsy, autism and mental retardation, to fall asleep. It can also improve secondary insomnia associated with various sleep-wake cycle disorders.

pharmacodynamics

Melatonin is a hormone normally produced in the pineal gland and released into the bloodstream. The essential amino acid L-tryptophan ( L-tryptophan) is the precursor for the synthesis of melatonin. It helps regulate the sleep-wake cycle, or circadian rhythm. Melatonin production is stimulated by darkness and inhibited by light. High levels of melatonin cause sleep, so taking this medication can combat insomnia and jet lag. MT1 and MT2 receptors may be targets for the treatment of circadian and noncircadian sleep disorders because of their pharmacological and functional differences within the SCN. The SCN is responsible for maintaining a 24-hour cycle that regulates many different body functions from sleep to immune function

Mechanism

Melanin is a derivative of tryptophan . It binds to the type 1A melatonin receptor, which then acts on adenylyl cyclase and inhibits the cAMP signaling pathway. Melatonin not only inhibits adenylate cyclase , but also activates phosphilpase C. This enhances the release of arachidonic acid ( arachidonate) . By binding to melatonin receptors 1 and 2, downstream signaling cascades produce various effects in the body. Melatonin receptors are G protein-coupled receptors expressed in various tissues of the body. There are two receptor subtypes in humans, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). Melatonin and melatonin receptor agonists, either on the market or in clinical trials, bind and activate both receptor types. The binding of agonists to receptors has been studied for more than two decades or since 1986. It is known by some but still not fully understood. When melatonin receptor agonists bind to and activate their receptors, it causes a number of physiological processes. MT1 receptors are expressed in many areas of the central nervous system (CNS): hypothalamic suprachiasmatic nucleus (SNC), hippocampus, substantia nigra, cerebellum, central dopaminergic pathways, ventral tegmental area, and nucleus accumbens. MT1 is also expressed in the retina, ovary, testis, mammary gland, coronary circulation and aorta, gallbladder, liver, kidney, skin, and immune system. The MT2 receptor is expressed primarily in the CNS but also in lung, heart, coronary and aortic tissues, myometrium and granulosa cells, immune cells, duodenum, and adipocytes. The binding of melatonin to melatonin receptors activates several signaling pathways. MT1 receptor activation inhibits adenylyl cyclase, and its inhibition causes a ripple effect of non-activation; starting with a reduction in cyclic adenosine monophosphate (cAMP) formation and then progressively reducing protein kinase A (PKA) activity, which in turn Blocks the phosphorylation of cAMP response element binding protein (CREB binding protein) to P-CREB. The MT1 receptor also activates phospholipase C (PLC), which affects ion channels and regulates intracellular ion flux. Binding of melatonin to MT2 receptors inhibits adenylyl cyclase, thereby reducing cAMP formation. It also blocks guanylyl cyclase, thereby preventing the formation of cyclic guanosine monophosphate (cGMP). Binding to the MT2 receptor may affect PLC, thereby increasing protein kinase C (PKC) activity.

absorb

Melatonin absorption and bioavailability vary widely.

metabolism

Hepatic metabolism to at least 14 identified metabolites (identified in mouse urine): 6-hydroxymelatonin glucuronide, 6-hydroxymelatonin sulfate, N-acetyl 5-hydroxytryptamine glucuronide, N -Acetyl serotonin sulfate, 6-hydroxymelatonin, 2-oxomelatonin, 3-hydroxymelatonin, melatonin, melatonin cyclic melatonin, cyclic N-acetyl 5- Serotonin glucuronide, cyclic 6-hydroxymelatonin, 5-hydroxyindole-3-acetaldehyde, dihydroxymelatonin and its glucuronic acid conjugates. 6-Hydroxymelatonin glucuronide is the major metabolite in mouse urine (accounting for 65-88% of the total melatonin metabolites in urine).

half life

35 to 50 minutes

toxicity

It is generally well tolerated when taken orally. The most common side effects, daytime drowsiness, headache and dizziness, appeared to occur with the same frequency as placebo. Other reported side effects include transient depressive symptoms, mild tremors, mild anxiety, abdominal cramping, irritability, decreased alertness, confusion, nausea, vomiting, and hypotension.

Safety in Adults: There is evidence that oral and parenteral forms may be safe for up to two months if used appropriately. Some evidence suggests it can be used safely by mouth in some patients for up to 9 months. Topical use may also be safe if used appropriately. Safety in Children: Melatonin appears to be safe to use in the small number of children who participated in short-term clinical trials. However, concerns about children's safety have arisen based on their developmental status. People under the age of 20 produce higher levels of melatonin than adults over the age of 20. Melatonin levels are inversely related to gonadal development, and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during pregnancy: High doses of melatonin administered orally or parenterally may suppress ovulation. Not recommended for use by people who are pregnant or trying to become pregnant. Safety during breastfeeding: Not recommended as safety has not been established. Melatonin levels are inversely related to gonadal development, and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during pregnancy: High doses of melatonin administered orally or parenterally may suppress ovulation. Not recommended for use by people who are pregnant or trying to become pregnant. Safety during breastfeeding: Not recommended as safety has not been established. Melatonin levels are inversely related to gonadal development, and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during pregnancy: High doses of melatonin administered orally or parenterally may suppress ovulation. Not recommended for use by people who are pregnant or trying to become pregnant.

Safety during breastfeeding: Not recommended as safety has not been established.

medicine interactions

1,2-Benzodiazepine The risk or severity of adverse effects can be increased when melatonin is combined with 1,2-benzodiazepine.
Concomitant use of abamepyr with abamepyr may increase the serum concentration of melatonin.
The metabolism of melatonin can be increased when Abatacept is combined with Abatacept.
The serum concentration of melatonin may be increased when Abiraterone is used concomitantly with Abiraterone.
Acamprosate excretion can be decreased when Acamprosate is combined with Melatonin.
Acenocoumarol The metabolism of Acenocoumarol can be decreased when combined with Melatonin.
Acetaminophen The metabolism of melatonin can be decreased when combined with acetaminophen.
Acetazolamide The risk or severity of adverse effects can be increased when Acetazolamide is combined with Melatonin.
Acetylphenazine The risk or severity of adverse effects can be increased when Acetylphenazine is combined with melatonin.

food interactions

Avoid alcohol. Alcohol intake may reduce the effects of melatonin.
Take after meals. Taking melatonin after eating can slow absorption and lower melatonin Cmax.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
忌廉有哪些不同種類?

忌廉有哪些不同種類?

忌廉有多種類型,每種都有不同的脂肪含量和烹飪用途: 濃奶油 (heavy cream) 脂肪含量最高,通常約36-40%。 它非常適合製作生奶油以及為醬汁和甜點。 鮮奶油 (Whipping cream) 與濃奶油類似,但脂肪含量略低,約 30-36%。 它用於製作鮮奶油,也可以添加到湯和醬汁...
如何判斷忌廉是否壞了?

如何判斷忌廉是否壞了?

忌廉的保存期限有多長? 根據 FDA 的規定,忌廉 (奶油) 是乳脂含量至少 36% 的奶油。它可以進行巴氏殺菌、超巴氏殺菌和均質化。應存放在華氏40度或以下的冰箱中。若經過超巴氏殺菌並正確處理,未開封時可保存長達 30 天,開封後可保存 7 天。要檢查它是否新鮮或安全,請品嚐它,尋找變質的跡...
什麼是加碘鹽?

什麼是加碘鹽?

什麼是加碘鹽? 碘鹽是用碘強化的食鹽。 碘是人體產生甲狀腺激素所需的重要微量營養素,而甲狀腺激素對於調節新陳代謝和其他重要的身體功能至關重要。缺碘會導致甲狀腺疾病,如甲狀腺腫、甲狀腺功能低下和發育問題,尤其是孕婦和嬰兒。 為了解決這個缺陷,許多國家實施了加碘計劃,在食鹽製造過程中添加少量碘化鉀...
什麼是巴斯克焦香芝士蛋糕? 附有食譜

什麼是巴斯克焦香芝士蛋糕? 附有食譜

巴斯克焦起司蛋糕 (Basque Burnt Cheesecake),是一種獨特美味的甜點,起源於西班牙巴斯克地區。 與通常光滑且奶油狀的傳統芝士蛋糕不同,巴斯克燒焦芝士蛋糕具有焦糖化的、幾乎焦糖狀的外部和奶油狀的蛋奶凍內部。這款起司蛋糕僅由幾種基本成分製成:奶油乳酪、糖、雞蛋、濃奶油和少量麵...
如何判斷芝士是否壞了? 跡象、預防和儲存技巧等

如何判斷芝士是否壞了? 跡象、預防和儲存技巧等

確定芝士 (起司) 是否變質取決於類型、儲存和可見跡像等因素。 乳酪和新鮮農產品一樣,含有可能變質的生物。變質的乳酪可能會因有害細菌而帶來健康風險,導致嘔吐和腹瀉等食物中毒症狀。與水果相比,識別起司何時變質可能具有挑戰性。 芝士變質的跡象 由於老化和腐敗的變化,確定起司何時過期可能具有挑戰性...
什麼是黃豆粉? 營養,好處,製作和食譜

什麼是黃豆粉? 營養,好處,製作和食譜

什麼是黃豆粉? 黃豆粉 (英文: kinako / roasted soy flour, 日文: きな粉、きなこ、黄粉) 是一種由烤大豆製成的精緻麵粉,由烤大豆磨成細粉製成的粉。 它具有堅果味,常用於日本料理中,為菜餚增添濃鬱的烘焙味道。 黃豆粉通常撒在日式糯米糍(麻糬)、冰淇淋和團子等甜點上...
桃膠: 好處和壞處禁忌

桃膠: 好處和壞處禁忌

桃膠是從桃仁(Amygdalus persica L.)或山扁桃(Amygdalus davidiana)的樹皮中分泌出來的天然藥用樹脂。屬於李屬植物,原產於中國。 外貌 固體樹脂大小不等,大的與龍眼相似。有白色、淺黃色、淺棕色和深紅棕色可供選擇。顏色類似自然生長,但不會影響營養價值。 代謝組...
蠔豉:類型、好處等等

蠔豉:類型、好處等等

蠔豉,是蠔(牡蠣)乾。中文發音聽起來像“好市”或“好事",這是一個普遍的傳統,中國人相信吃含有幸運意義的食物,特別是在農曆新年期間,會給他們帶來好運。起源於中國廣東,因此它是粵菜中著名的食物,尤其是在節日期間。 為什麼要做蠔豉? 新鮮蠔曬乾後就成為蠔乾,不僅鮮味濃縮,而且可以延長保存期限,方...
乾蝦 - 種類、產量等

乾蝦 - 種類、產量等

乾蝦是以多種蝦類為原料加工而成的熟乾製品。 類型 - 依尺寸 不同種類的蝦乾由不同種類的蝦製成,加工方法不同,看起來自然不同。主要分為「蝦米」和「蝦皮」兩種。 蝦米 蝦米又稱海米、金鉤,是由多種蝦類加工而成的熟乾製品,通常採用各水域的中型蝦,去頭去皮後加工而成。因其質硬,曬乾後體積縮小,形似米...