鐵吸收的生物化學

basic knowledge

There are two types of absorbable dietary iron: heme and non-heme iron.

  • Heme iron from hemoglobin and myoglobin from animal food sources (meat, seafood, poultry) is the most easily absorbed form (15% to 35%) and accounts for 10% or more of our total absorbed iron.
  • Non-heme iron comes from plants and iron-fortified foods and is poorly absorbed.

Despite its relative abundance in the environment and relatively low human daily iron requirements, iron is often a growth-limiting nutrient in the human diet. Low iron intake is responsible for most anemia in developed countries and nearly half of anemia in non-industrialized countries. One reason for insufficient iron absorption is that upon exposure to oxygen, iron forms highly insoluble oxides that cannot be absorbed in the human gastrointestinal tract. Human intestinal epithelial cells contain apical membrane-bound enzymes whose activity can be regulated and which reduce insoluble iron (Fe3+) to absorbable ferrous iron (Fe2+) ions.

While iron deficiency is a relatively common problem, it's not the only extreme on the iron balance spectrum that must be avoided. Iron overload is particularly harmful to the heart, liver, and endocrine organs. Excess ferrous iron forms free radicals through the Fenton reaction, causing damage to tissues through oxidative reactions with lipids, proteins and nucleic acids. Therefore, where possible, dietary iron absorption and factors affecting bioavailability in the body are tightly controlled.

cellular level

Most dietary iron absorption occurs in the duodenum and proximal jejunum and depends largely on the physical state of the iron atoms. At physiological pH, iron exists in the oxidized ferric (Fe3+) state. To be absorbed, iron must be in the ferrous (Fe2+) state or bound by proteins such as heme. The low pH of gastric acid in the proximal duodenum allows the ferric reductase duodenal cytochrome B (Dcytb) to convert insoluble iron (Fe3+) into absorbable ferrous (Fe2+) ions at the brush border of enterocytes. . Gastric acid production plays a key role in plasma iron homeostasis. Iron absorption is greatly reduced when proton pump inhibitors such as omeprazole are used. Once ferric iron is reduced to ferrous iron in the intestinal lumen, a protein on the apical membrane of the enterocyte called divalent metal cation transporter 1 (DMT1) transports the iron across the apical membrane into the cell. Hypoxia-inducible factor 2 (HIF-2α) upregulates DMT1 and Dcytb levels in the hypoxic environment of the intestinal mucosa.

Certain dietary compounds inhibit or enhance the duodenal pH-dependent iron absorption process.

  • Inhibitors of iron absorption include phytate, a compound found in plant-based diets that exhibits dose-dependent effects on iron absorption. Polyphenols are found in black and herbal teas, coffee, wine, legumes, grains, fruits and vegetables, and have been shown to inhibit iron absorption. Unlike other inhibitors, such as polyphenols and phytates, which only block non-heme iron absorption, calcium inhibits both heme and non-heme iron when initially absorbed by enterocytes. Animal proteins such as casein, whey, egg whites, and plant proteins have been shown to inhibit the body's absorption of iron. Oxalic acid, found in spinach, beets, legumes and nuts, binds and inhibits iron absorption.
  • The enhancer of iron absorption is primarily the effect of vitamin C, which can overcome the effects of all dietary inhibitors when included in a diet high in non-heme iron (usually a diet high in vegetables). Ascorbic acid forms a chelate with ferric iron (Fe3+) in the low pH of the stomach, which persists and remains soluble in the alkaline environment of the duodenum.

molecular level

Once inside enterocytes, iron can be stored as ferritin or transported across the basolateral membrane into the circulation bound to ferroportin.

Ferritin is a hollow, globular protein composed of 24 subunits that enhances the storage and regulation of iron levels in the body. Iron is stored in the interior of the ferritin globules in the Fe3+ state by incorporation into a solid crystalline mineral called ferrihydrite [FeO(OH)]8[FeO(H2PO4)].

The monomer of the ferritin molecule has ferroxidase activity (Fe3+ ↔ Fe2+), which causes the Fe2+ ions to migrate out of the ferrihydrite lattice structure, allowing them to subsequently flow out of the intestinal epithelial cells through ferroportin and cross the basolateral membrane of the intestinal epithelial cells. Enter the loop. The transmembrane protein ferroportin is the only efflux pathway for cellular iron and is almost entirely regulated by hepcidin levels. High levels of iron, inflammatory cytokines, and oxygen lead to increased levels of the peptide hormone hepcidin. Hepcidin binds to ferroportin, causing its internalization and degradation, and effectively shunts cellular iron into ferritin stores and prevents its absorption into the blood. thereby,

If hepcidin levels are low and ferroportin is not downregulated, ferrous iron (Fe2+) can be released from the enterocyte, where it is again oxidized to ferric iron (Fe3+) to bind to transferrin, which is present in Carrier proteins in plasma. Two copper-containing enzymes, ceruloplasmin in plasma and hephaestin on the basolateral membrane of enterocytes, catalyze the oxidation of ferrous iron and subsequently bind to transferrin in plasma. The main function of transferrin is to chelate iron to make it soluble, prevent the formation of reactive oxygen species, and facilitate its transport into the cell.

clinical significance

Enterocyte DMT1 and Dcytb levels are upregulated in the setting of iron deficiency anemia, and mutations in DMT1 have been shown to cause microcytic anemia and hepatic iron overload.

Conditions that degrade the duodenal mucosa that reduce iron absorption include:

  • Celiac disease
  • tropical sprue
  • Crohn's disease
  • duodenal cancer
  • duodenal ulcer
  • familial adenomatous polyposis

Anemia of chronic disease is a normocytic, normocytic anemia characterized by elevated ferritin stores but reduced systemic iron levels. Inflammatory states increase cytokine release (IL-6), which stimulates hepcidin expression in the liver. Hepcidin degradation through ferroportin leads to reduced iron absorption and reduced iron release from macrophages. The iron accumulated in the cells of anemia of chronic disease is stored in the form of ferritin.

Iron deficiency anemia is a hypochromic microcytic anemia caused by bleeding, reduced dietary iron, or reduced iron absorption. Menstruating women of childbearing age need twice the amount of iron as men of the same age. Pregnancy and breastfeeding also significantly increase a woman's iron requirements, helping to make iron deficiency the most common dietary deficiency in the world.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友一睇YouTube、打機、畫畫,突然叫佢,佢完全聽唔到。係咪扮聾?係咪發展遲緩?抑或專注力問題? 研究顯示,大部分情況完全正常,與腦部的「選擇性注意力(Selective Attention)」同「過度專注(Hyperfocus)」有關,不代表有疾病。 什麼是「選擇性注意力」?(Sele...
高血壓|隱形殺手的成因、統計數據與科學研究

高血壓|隱形殺手的成因、統計數據與科學研究

  高血壓|隱形殺手的成因、統計數據與科學研究 快速導讀 高血壓係全球最普遍、但最容易被忽視嘅慢性病之一。 超過一半患者完全無症狀,但長期會破壞血管、增加中風同心臟病風險。 主要成因包括:高鹽、肥胖、缺乏運動、低鉀、飲酒、睡眠窒息症、壓力、吸煙、腎病等。 全球研究顯示:高鹽攝取加上肥胖...
為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

肺癌一直是全球最常見、死亡率最高的癌症之一。令人憂心的是,大部分肺癌患者在早期(第一、二期)都沒有明顯症狀,往往直到腫瘤擴散、壓迫周邊結構或影響呼吸功能後才被發現。本文以科學角度深入講解:為何肺癌早期「靜悄悄」、身體不察覺?身體內部究竟發生了甚麼? 亦會加入實際的自我檢查策略與醫學建議。 一...
黑眼圈成因全解析:從生理、生活習慣到醫學對策

黑眼圈成因全解析:從生理、生活習慣到醫學對策

前言:為何黑眼圈總是揮之不去? 「黑眼圈」係現代人嘅常見問題之一。無論係通宵工作、壓力過大、過敏,甚至遺傳因素,都可能令眼底皮膚變黑或出現陰影。雖然多數情況屬於美容問題,但有時亦可能反映身體狀況,例如貧血、睡眠質素差、血液循環不良等 [1]。  一、黑眼圈的主要類型與成因 色素型黑眼圈(Pi...
智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

1. 前言 血氧飽和度(SpO₂)是評估呼吸、循環系統狀態的重要指標。近年來,市面上兩大類可穿戴設備用於血氧監測: 智慧手錶(如 Samsung Watch、Apple Watch) 專用血氧監測設備(如 O₂Ring、指夾式脈搏血氧儀) 兩種設備的設計目的、測量方式、準確性、監測...
血氧飽和度、氧氣下降與「警戒線」的科學探討

血氧飽和度、氧氣下降與「警戒線」的科學探討

1. 前言 血氧飽和度(SpO₂)即血液中氧合血紅蛋白佔總血紅蛋白的百分比,是臨床及居家監測呼吸、循環功能的重要指標。當血氧飽和度下降,可能反映體內氧的供應或運送出現問題(低氧血症、hypoxemia)或更廣泛的組織缺氧(hypoxia)[1][2]。本文旨在探討: 血氧飽和度正常範圍與變...
冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Ice Pack / Cold Therapy / Cryotherapy)係好多運動、急性受傷(如扭傷、撞擊、肌肉拉傷)時的第一時間處理方法。但不少人會疑惑: 「冰敷純粹止痛,定係真係會幫助組織修復?」「冰敷幾耐?冰敷幾多日?會唔會影響身體自然修復?」 本文從科學、醫學、運動治療角度,...
長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

前言:為何「坐耐、蹲耐、跪耐」之後會痛? 無論係坐喺電腦前、跪低執嘢、長時間翹腳、側睡又唔郁——好多人體驗過一樣情況: 「一動就痛、一企起身腳軟、膝蓋直唔到、關節卡卡聲,又或者要行幾步先鬆返。」 其實呢種情況係非常普遍,而且通常並非關節已經壞死,而係 和關節生理、滑液循環、血液供應、肌肉張力 ...
魚醒味的科學:成因、風險與處理方法全面解析

魚醒味的科學:成因、風險與處理方法全面解析

「魚醒味」是華人烹飪文化中常見的說法,用以描述魚類在 解凍、切片或加熱後所突然出現的腥味、血水味或脂肪味。此現象並不代表食材變壞,但背後牽涉到蛋白質變化、脂肪氧化與揮發性化合物釋放等多種科學機制。本文將以科學角度剖析魚醒味的成因,並提供實證方法降低這種味道,同時探討其安全性。 🧪 什麼是「魚...