關於安賽蜜您需要了解的一切

Acesulfame K, also known as Acesulfame K or Ace K, is a synthetic non-caloric sugar substitute (artificial sweetener) commonly sold under the trade names Sunet and Sweet One. In the EU, its name is E number E950.

The history of acesulfame potassium

Acesulfame potassium was accidentally discovered in 1967 by Karl Clauss and Harald Jensen of Hoechst AG. Developed later. After accidentally dipping his fingers in the chemicals he was working with, Klaus licked his fingers and picked up a piece of paper. Clauss is the listed inventor on a 1975 U.S. patent issued to assignee Hoechst Aktiengesellschaft covering a method of making acesulfame potassium. Subsequent research showed that many compounds with the same basic ring structure have varying degrees of sweetness. 6-Methyl-1,2,3-oxathiazin-4(3 H )-one 2,2-dioxide has particularly good taste characteristics and is relatively easy to synthesize, so it was selected for further study and was obtained The common name (acesulfame potassium-K) was approved by the World Health Organization in 1978. Acesulfame potassium was first approved for tabletop use in the United States in 1988 . White crystalline powder, molecular formula C4H4 potassium nitrate 4S, molecular weight 201.24 g/mol.

Features of acesulfame potassium

Acesulfame potassium is 200 times as sweet as sucrose (ordinary sugar), as sweet as aspartame, about two-thirds as sweet as saccharin, and one-third as sweet as sucralose. Like saccharin, it has a slightly bitter taste, especially in high concentrations. Kraft Foods patented the use of sodium ferulate to mask the aftertaste of acesulfame potassium. Acesulfame potassium is often mixed with other sweeteners, usually sucralose or aspartame. These blends are considered to have a more sucrose-like taste, with each sweetener masking the aftertaste of the other or exhibiting a synergistic effect that makes the blend sweeter than its ingredients. Acesulfame potassium has a smaller particle size than sucrose, allowing it to blend more evenly with other sweeteners.

Unlike aspartame, acesulfame potassium is stable under heat, even under moderately acidic or alkaline conditions, so it can be used as a food additive in baking, or in products requiring a longer shelf life. Although acesulfame potassium has a stable shelf life, it eventually degrades to acetate, which can be toxic at high doses. In carbonated drinks, it is almost always combined with another sweetener, such as aspartame or sucralose. It is also used as a sweetener in protein shakes and pharmaceuticals, especially chewable tablets and liquid medications, where it can make the active ingredient more palatable. The acceptable daily intake of acesulfame potassium is 15 mg/kg/day.

Acesulfame K is widely used in the human diet and is excreted via the kidneys. Therefore, researchers use it as a marker to assess how contaminated a swimming pool is with urine.

Other names for acesulfame potassium are acesulfame potassium, 6-methyl-1,2,3-oxothiazin-4(3H)-one-2,3-dioxide potassium salt, and 6-methyl- 1,2,3-Potassium salt of oxathiazin-4(3 H)-one-3-ester-2,2-dioxide.

Effect on body weight

Acesulfame K provides a sweet taste with no caloric value. There is no high-quality evidence that using acesulfame potassium as a sweetener affects body weight or body mass index (BMI).

What is acesulfame potassium?

Acesulfame potassium is a non-caloric sweetener used in foods and beverages to provide sweetness without adding the calories contained in sugar. While some types of sweeteners are considered non-caloric (such as acesulfame potassium, monk fruit sweetener, stevia sweetener, and sucralose), other types of sweeteners are low-calorie (such as aspen Batame), but these ingredients are often collectively referred to as artificial sweeteners, high-intensity sweeteners, low-calorie sweeteners, low- and no-calorie sweeteners, non-nutritive sweeteners, or sugar substitutes .

Acesulfame potassium was originally developed by German researchers in 1967 and was first approved for use in Europe in 1983. Five years later, in 1988, it was approved in the United States. Today, it is often combined with other low- and no-calorie sweeteners, such as aspartame and sucralose, to taste more like sugar than acesulfame potassium on its own.

Like other low- and no-calorie sweeteners, acesulfame potassium is very sweet. It is approximately 200 times sweeter than sucrose (table sugar), so only a small amount is needed to match the sweetness provided by sugar. Acesulfame K maintains its sweetness over a wide temperature range and under many food processing conditions, which allows it to be used as an ingredient in a variety of food products, including baked goods, beverages, confectionery, chocolate, dairy products, desserts, and More. When Acesulfame Potassium is used as an ingredient in packaged foods or beverages, it will appear on the ingredient list of that product as Ace-K, Acesulfame Potassium K, or Acesulfame Potassium.

What changes will happen after taking acesulfame potassium?

Acesulfame potassium produces a sweet taste soon after consumption. Eventually, it is fully absorbed from the intestines into our bloodstream, filtered out by our kidneys, and rapidly excreted unchanged through the urine - all in about 24 hours. Small amounts of acesulfame potassium may also be excreted into the breast milk of nursing women.

Is it safe to take acesulfame potassium?

Acesulfame potassium is safe to consume. It has been approved by the U.S. Food and Drug Administration (FDA) since 1988 and is one of eight low- and no-calorie sweeteners currently allowed in the U.S. food supply. Leading global health authorities such as the European Food Safety Authority (EFSA), the Joint FAO/WHO Expert Committee on Food Additives (JECFA), the Japanese Ministry of Health, Labor and Welfare, the Food Standards Australia New Zealand (FSANZ), and Health Canada also Acesulfame potassium has been found to be safe for consumption.

How much acesulfame potassium is safe to take?

The FDA sets Acceptable Daily Intake (ADI) levels for many of the food ingredients it allows for use in foods and beverages. The ADI is a lifetime average daily intake that is expected to be safe based on numerous studies. It is derived by determining the No Observed Adverse Effect Level (NOAEL), which is the highest intake level at which no adverse effects are found in lifetime studies in animal models. The NOAEL is then usually divided by 100. Setting the ADI 100 times lower than the upper limit of no adverse effects in toxicology studies increases the safety margin and helps ensure safety for human ingestion.

The daily ADI of acesulfame potassium approved by EFSA is 0-9 mg per kilogram (kg) of body weight. The FDA and JECFA each set the ADI at 0-15 mg/kg body weight per day. According to the FDA's ADI for acesulfame potassium, a person weighing 150 pounds (68 kg) would exceed the ADI if they consumed more than 26 servings of acesulfame potassium-containing sweeteners per day during their lifetime.

Although precise measurements of total acesulfame potassium intake in the United States are limited, a recently reported conservative average estimate of daily acesulfame potassium intake from beverages for U.S. adults is 1.8 mg/kg body weight. This intake is well below the FDA ADI. Globally, estimated intake of acesulfame potassium from food and beverages also remains well below the EFSA and JECFA ADI. A 2018 scientific review found that studies conducted since 2008 did not raise concerns about major low- and no-calorie sweeteners, including acesulfame potassium, exceeding the ADI in the general population.

Does acesulfame potassium cause cancer?

When concerns arose in the early 1970s that low-calorie sweeteners might cause cancer, the news sparked concern among governments, scientists and the public. Preliminary research suggests that saccharin causes bladder cancer in male rats and may have similar effects in humans. However, subsequent research determined that saccharin does not cause cancer in humans. The biological mechanism by which saccharin consumption causes cancer is specific to rats and does not apply to humans.

Since then, scientists have continued to study the potential link between low-calorie sweeteners and cancer. Several studies over the decades have claimed to prove that certain types of low-calorie sweeteners cause cancer, prompting widespread scrutiny of the methods used to support such conclusions. Independent government and expert reviews have repeatedly found that these studies have significant flaws and do not meet the standards for official safety assessments. Government agencies' safety assessments are based on the highest quality scientific research, which consistently shows that consuming low-calorie sweeteners does not cause cancer or increase the risk of cancer.

Can children take acesulfame potassium?

Health and food safety agencies such as EFSA, FDA and JECFA have concluded that acesulfame potassium is safe for adults and children to consume within the ADI.

Professional health organizations such as the American Heart Association (AHA) and the American Academy of Pediatrics (AAP) have issued recommendations regarding low-calorie sweetener intake in children. The American Heart Association recommends that children avoid regular drinks containing low-calorie sweeteners and instead recommends drinking water and other unsweetened beverages, such as plain milk. One of the notable exceptions to the 2018 AHA scientific recommendations is that for children with diabetes, drinking low-calorie sugary drinks instead of sugary drinks may benefit their blood sugar management. Likewise, the American Academy of Pediatrics recognizes that consumption of low-calorie sweeteners in children over two years of age may help reduce caloric intake (especially in obese children), dental caries incidence, and glycemic responses in children with type 1 and type 2 diabetes.

The 2020-2025 Dietary Guidelines for Americans (DGA) do not recommend low-calorie sweeteners or added sugars for children under two years of age. This recommendation from the DGA has nothing to do with weight, diabetes, or the safety of added sugar or low-calorie sweeteners, but rather aims to avoid babies and young children’s preference for overly sweet foods during this stage of their development.

Can pregnant women take acesulfame potassium?

According to EFSA, FDA and JECFA, acesulfame potassium is safe for pregnant or breastfeeding women to consume within the ADI range. The FDA approves the use of acesulfame potassium in any population without any restrictions. However, pregnant women should consult their health care provider about nutritional issues, including the use of low- and no-calorie sweeteners such as acesulfame potassium.

Can diabetics take acesulfame potassium?

A recent consensus statement from experts in the fields of nutrition, medicine, physical activity, and public health cites the neutral effects of low-calorie sweeteners, including acesulfame potassium, on HbA1c, fasting and postprandial blood glucose, and insulin levels, and concludes Conclusion: Using low-calorie sweeteners in diabetes self-care may contribute to better blood glucose management.

A global health professional organization has published its conclusions on the safety and effects of low-calorie sweeteners in people with diabetes. The 2022 American Diabetes Association Diabetes Standards of Care state, “For some people with diabetes who are accustomed to regularly consuming sugar-containing products, nonnutritive sweeteners (containing few or no calories) may be a substitute for nutritive sweeteners (these Acceptable substitutes for sweeteners). Caloric-containing foods such as sugar, honey, and agave syrup), but consumed in moderation. Nonnutritive sweeteners do not appear to have a significant impact on blood sugar management, but as long as the individual does not By adding extra calories from other food sources, they can reduce overall calorie and carbohydrate intake." Diabetes Canada and Diabetes UK also support the use of low- and no-calorie sweeteners (such as acesulfame potassium) for people with diabetes. similar statements of safety and potential use.

Despite these conclusions, some studies raise questions about low-calorie sweeteners and blood sugar management. Some observational studies have shown an association between consumption of low-calorie sweeteners in diet beverages and the risk of type 2 diabetes; however, observational studies cannot prove cause and effect. Conclusions from observational study designs are at risk of reverse causation and confounding. For example, many studies did not adjust for obesity, a direct contributor to prediabetes and type 2 diabetes. This is an important omission given that overweight and obese people tend to consume more low-calorie sweetened beverages compared with leaner people.

Does acesulfame potassium cause tooth decay?

There are many factors that cause tooth decay, including the amount of sugar eaten, the consistency of the food eaten, the frequency of eating, and daily oral hygiene. Like other low- and no-calorie sweeteners, acesulfame potassium does not cause tooth decay. Bacteria in your mouth do not feed on acesulfame potassium, so it is not converted into plaque or harmful acids that cause cavities.

What's the bottom line?

Acesulfame potassium has been approved by the FDA as a food additive for more than 30 years, and its safety has been repeatedly recognized by many international health agencies. All types of foods and beverages, including those made with acesulfame potassium, can have a place in a variety of healthy eating patterns. Choosing foods and beverages sweetened with low- and no-calorie sweeteners, such as acesulfame potassium, is one way to reduce your consumption of added sugar and control calories, both of which are important components of staying healthy.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
什麼是 Alpha-GPC? 它如何提升大腦功能?

什麼是 Alpha-GPC? 它如何提升大腦功能?

Alpha-GPC,全名為α-磷脂酰膽鹼,是一種天然存在於人體內的化合物,以其在促進大腦功能方面的潛力而聞名。它是膽鹼的前體,這意味著它可以在體內轉化為膽鹼,進而影響到神經傳遞和腦部健康。 Alpha-GPC的功效 增強認知功能: 研究顯示,Alpha-GPC能夠增加腦部中的乙酰膽鹼水平,...
保護牙齒免受酸侵蝕:提升牙齒健康的實用建議

Protecting Your Teeth from Acid Erosion: Tips for Better Dental Health

Our teeth are resilient, but they are not impervious to damage, especially when exposed to acidic foods and beverages. Acid erosion occurs when the...
鋁在廚房中的應用:平衡便利性和健康

鋁在廚房中的應用:平衡便利性和健康

  鋁在全球許多廚房中都是一種不可或缺的材料,因其多功能性和實用性而廣受歡迎。從鋁箔(石紙)到炊具 (廚具),它的存在幾乎無處不在。然而,關於鋁暴露的健康風險的討論引起了更多的關注。本文探討了鋁在廚房中的使用、潛在的健康問題、實際問題、注意原因、應避免的事項及更安全的建議。 了解鋁暴露 鋁的...
兒童出現夢擾症?

兒童出現夢擾症?

什麼是夢擾症? 夢擾症(Parasomnia)是一類睡眠障礙,特徵係喺睡眠期間或者睡眠-醒覺過渡期間出現異常嘅行為、動作、情感、感知或者生理事件。以下係啲常見例子: 非快速眼動(Non-REM)夢擾症 呢啲發生喺非快速眼動(Non-REM)睡眠階段: 夢遊症:喺訓著嘅時候起身行來...
什麼是香印提子?

什麼是香印提子?

香印提子,(學名:Shine Muscat) 又名陽光玫瑰和晴王麝香葡萄 香印提子是由日本國家農業和食品研究組織(NARO)培育和註冊的葡萄品種,註冊名為「葡萄諾林21號」。該品種起源於廣島,近年來因其獨特特性迅速走紅,成為日本主要葡萄品種之一。香印提子因其「帶皮食用」、「無籽」、「粒大」和「...
什麼是秋葵?

什麼是秋葵?

秋葵是一種主要在溫暖和熱帶氣候地區種植的蔬菜作物,例如非洲和南亞。 它的外形獨特,長條狀,因此也被稱為"Lady's Finger"。 秋葵主要有兩種顏色 - 紅色和綠色,兩者味道相同,紅色的秋葵煮熟後會變綠。 營養價值 秋葵熱量低,每100克約33-40卡路里。 富含膳食纖維、維生素A...
什麼是薯仔麵?

什麼是薯仔麵?

薯仔麵是一種韓國傳統的即食麵,主要原料是馬鈴薯澱粉製成的麵條。它有以下特點: 麵條口感彈有嚼勁,與一般麵條有所不同。 常見的口味有原味、辣味等,有些品牌會推出限定口味。 通常以袋裝或杯裝形式出售,方便食用。 除了麵條外,還會附有調味包,如辣椒粉、蔬菜粉等。 屬於較為健康的即食麵選擇,因為主要...
菠菜苗的健康益處和烹飪多樣性

菠菜苗的健康益處和烹飪多樣性

菠菜苗,即菠菜植物的嫩芽和嫩莖,在獨特的風味和出色的營養價值方面越來越受到人們的喜愛。儘管與成熟的菠菜葉相比經常被忽視,但菠菜苗提供了許多健康益處和烹飪可能性,值得關注。 營養價值 儘管體積小,菠菜苗卻是營養豐富的。它們富含維生素C、維生素K、維生素A、葉酸、鐵和鉀等必要的維生素和礦物質。此外...
菠菜禁忌 - 菠菜不能與什麼一起吃?

菠菜禁忌 - 菠菜不能與什麼一起吃?

菠菜的營養價值 菠菜,作為一種營養豐富的蔬菜,被廣泛認可為健康飲食的一部分。它含有豐富的維生素A、維生素C、鐵、鎂和纖維,這些營養素對於促進免疫系統、預防貧血和維持消化功能至關重要。然而,雖然菠菜對我們的健康有益,但它也有一些需要注意的禁忌,特別是在與其他食物一起食用時。 與其他食物的相容性 ...