什麼是麥芽糖?它的歷史、特性、來源和用途

Carbohydrates are an important component of food. They are composed of carbon, hydrogen and oxygen. Lower molecular weight carbohydrates are often called sugars, with their names ending in the characteristic "ose." Some examples of these sugars are sucrose, lactose, glucose, maltose, etc.

Maltose is a disaccharide. It is produced by connecting two glucose units through α(1→4) bonds. The general formula of disaccharide is Cₙ(H2O)ₙ₋₁. The molecular formula is C12H22O11. It is a reducing sugar and undergoes metarotation.

The history of maltose

Discovery in Brewing: In ancient times , maltose has been part of human culinary history for thousands of years, and its discovery may be related to the early practice of brewing beer.

Brewing and Fermentation: In ancient China , historical evidence shows that maltose-containing beverages were brewed in ancient China as early as the Neolithic Age (approximately 7000-6600 BC). The Babylonians are believed to have brewed beer around 6000 BC, with maltose playing a role in the fermentation process.

In the early nineteenth century, there was a shortage of sucrose, and scientists began to look for other sources of sugar. French chemist Augustin-Pierre Dubrunfaut first discovered the phenomenon of mutarotation in 1844, when he noticed that the specific optical rotation of aqueous sugar solutions changed with time. In the same paper, he also showed that the conversion of sucrose in the presence of brewer's yeast was not the result of fermentation. Then Dubrenfort discovered the organic fructose molecule in 1847. He also discovered maltose, although this discovery was not widely accepted until 1872 , when Irish chemist and brewer Cornelius O'Sullivan confirmed the disaccharide maltose.

The word maltose is derived from "malt" and since it is a sugar, the suffix "ose" was added. Therefore, it is named "maltose", also known as maltose or maltotriose.

How is maltose formed?

Maltose is a disaccharide type of carbohydrate. It is designed from two glucose molecules. As the water molecule is removed, the two glucose molecules form a bond. The result is formed.

The molecular formula of maltose or maltose is C12H22O11.H2O. It is prepared from starch through amylase. After hydrolysis by acid, only d-glucose is produced.

When the dough is fermented, the yeast provides the sugar. Most of the sugar available to yeast is maltose, which comes from starch. It acts like an early product of photosynthesis rather than a warehouse product such as starch and its spoiled products.

Maltose structural formula

Carbohydrates are generally classified into monosaccharides, oligosaccharides, disaccharides, and polysaccharides based on the number of sugar subunits. Maltose is a disaccharide carbohydrate. Therefore, maltose is composed of two sugar units, an oligosaccharide and a disaccharide. It consists of two glucose molecule modules. Glucose is a common hexose sugar, a simple sugar containing six carbon atoms.

In maltose, two units of glucose are in the form of pyranose sugars. O-glycosidic bonds connect these units. In this bond, the first carbon (C1) of the first glucose molecule is connected to the fourth carbon (C4) of the second glucose molecule, forming a (1→4) bond.

Since the glycosidic bond to the anomeric carbon (C1) lies in the opposite plane to the CH2OH substituent of the same glucose ring, this bond is characterized as α. If this glycosidic bond occurred in the same plane it would be represented as a β(1→4) bond and then the resulting molecule would be cellobiose rather than maltose.

The anomeric carbon (C1) of the other glucose molecule hangs in the direction of the bond to the hydroxyl group relative to the CH2OH substituent of the similar glucose ring. This carbon is not complex in the glycosidic bond and can be an α- or β-terminal group. isomer. Therefore, it results in the formation of beta-maltose or alpha-maltose.

Isomaltose is an isomer of maltose and is similar to maltose. But in isomaltose, the α(1→4) bond is replaced by α(1→6) bond.

Production of maltose

With the advancement of food technology, maltose has been produced commercially on a large scale. It is used in the food industry for its sweetening properties and as an ingredient in various foods.

The name maltose comes from the word "malt". The suffix "ose" is added to describe that maltose belongs to the sugar class. "ose" represents the important biochemical series of glucose chains. It is named after the germination process, an example of this reaction found in germinating seeds.

It is formed by the digestion of starch by amylase. The preparation of maltose is accomplished by hydrolysis of starch in the presence of amylase. Starch is heated with a strong acid for a few minutes, breaking down to form two glucose molecules. With the help of maltase, it is converted into glucose. This glucose is used in biological processes.

It is also produced when beta-amylase breaks down starch by removing two glucose units at the same time.

Properties of maltose

Maltose is also a reducing sugar similar to glucose. The reason is that the two glucose units are connected, so when the ring is opened, one of the glucose units can acquire an aldehyde group. The properties of the glycosidic bond are unlikely to exist with other units of the glucose molecule.

Maltase can break down this glycosidic bond. This enzyme catalyzes the hydrolysis step of glycosidic bonds. As a result, glucose units are formed.

It exhibits mutarotation in aqueous solution; the two forms exist in equilibrium in aqueous solution.

Depending on the concentration, maltose is almost 30-60% as sweet as sugar. Additionally, a 10% maltose solution is 35% as sweet as sucrose.

Origin and assimilation of maltose

Maltose is the component of "malt". It is a substance obtained by converting grains into malted grains. Grains can be converted into sprouts by soaking them in water. Afterwards, the stopped germination process is dried with hot air. In this way, enzymes are produced to break down the starch and protein in the grains.

It is a partially hydrolyzed starch product similar to corn syrup, maltodextrin and acid dilute starch.

It is broken down by various maltase enzymes in the human body to provide two glucose molecular units. These glucose molecules can be broken down further and provide energy, or they can be stored as glycogen.

Sucrose intolerance in humans occurs due to a deficiency of the enzyme invertase-isomaltase. But because there are four different maltase enzymes, complete maltose deviations are extremely rare.

Fruit is another common source of maltose in the diet, especially pears and peaches.

Uses of maltose

  • Sweetener: Over time, maltose found its way into culinary applications beyond brewing. Its sweetening properties make it valuable for a variety of dishes and sweets.
  • Maltose syrup: Maltose syrup is a concentrated form of maltose that has become a popular sweetener and ingredient in the production of candy, baked goods, and Asian sauces.
  • Sweet Treats: Maltose has always been a key ingredient in traditional Chinese sweets. It is used in the preparation of foods such as maltose confectionery (dragon sugar) and maltose-coated fruits and nuts.
  • Use in brewing: Maltose is an important ingredient in brewing, providing the fermentable sugars needed by yeast to produce alcohol.

Maltose and health

Although maltose provides energy as a carbohydrate, it is important to consume it in moderation. Excessive consumption of added sugars, including maltose, has been linked to health problems.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友一睇YouTube、打機、畫畫,突然叫佢,佢完全聽唔到。係咪扮聾?係咪發展遲緩?抑或專注力問題? 研究顯示,大部分情況完全正常,與腦部的「選擇性注意力(Selective Attention)」同「過度專注(Hyperfocus)」有關,不代表有疾病。 什麼是「選擇性注意力」?(Sele...
高血壓|隱形殺手的成因、統計數據與科學研究

高血壓|隱形殺手的成因、統計數據與科學研究

  高血壓|隱形殺手的成因、統計數據與科學研究 快速導讀 高血壓係全球最普遍、但最容易被忽視嘅慢性病之一。 超過一半患者完全無症狀,但長期會破壞血管、增加中風同心臟病風險。 主要成因包括:高鹽、肥胖、缺乏運動、低鉀、飲酒、睡眠窒息症、壓力、吸煙、腎病等。 全球研究顯示:高鹽攝取加上肥胖...
為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

肺癌一直是全球最常見、死亡率最高的癌症之一。令人憂心的是,大部分肺癌患者在早期(第一、二期)都沒有明顯症狀,往往直到腫瘤擴散、壓迫周邊結構或影響呼吸功能後才被發現。本文以科學角度深入講解:為何肺癌早期「靜悄悄」、身體不察覺?身體內部究竟發生了甚麼? 亦會加入實際的自我檢查策略與醫學建議。 一...
黑眼圈成因全解析:從生理、生活習慣到醫學對策

黑眼圈成因全解析:從生理、生活習慣到醫學對策

前言:為何黑眼圈總是揮之不去? 「黑眼圈」係現代人嘅常見問題之一。無論係通宵工作、壓力過大、過敏,甚至遺傳因素,都可能令眼底皮膚變黑或出現陰影。雖然多數情況屬於美容問題,但有時亦可能反映身體狀況,例如貧血、睡眠質素差、血液循環不良等 [1]。  一、黑眼圈的主要類型與成因 色素型黑眼圈(Pi...
智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

1. 前言 血氧飽和度(SpO₂)是評估呼吸、循環系統狀態的重要指標。近年來,市面上兩大類可穿戴設備用於血氧監測: 智慧手錶(如 Samsung Watch、Apple Watch) 專用血氧監測設備(如 O₂Ring、指夾式脈搏血氧儀) 兩種設備的設計目的、測量方式、準確性、監測...
血氧飽和度、氧氣下降與「警戒線」的科學探討

血氧飽和度、氧氣下降與「警戒線」的科學探討

1. 前言 血氧飽和度(SpO₂)即血液中氧合血紅蛋白佔總血紅蛋白的百分比,是臨床及居家監測呼吸、循環功能的重要指標。當血氧飽和度下降,可能反映體內氧的供應或運送出現問題(低氧血症、hypoxemia)或更廣泛的組織缺氧(hypoxia)[1][2]。本文旨在探討: 血氧飽和度正常範圍與變...
冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Ice Pack / Cold Therapy / Cryotherapy)係好多運動、急性受傷(如扭傷、撞擊、肌肉拉傷)時的第一時間處理方法。但不少人會疑惑: 「冰敷純粹止痛,定係真係會幫助組織修復?」「冰敷幾耐?冰敷幾多日?會唔會影響身體自然修復?」 本文從科學、醫學、運動治療角度,...
長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

前言:為何「坐耐、蹲耐、跪耐」之後會痛? 無論係坐喺電腦前、跪低執嘢、長時間翹腳、側睡又唔郁——好多人體驗過一樣情況: 「一動就痛、一企起身腳軟、膝蓋直唔到、關節卡卡聲,又或者要行幾步先鬆返。」 其實呢種情況係非常普遍,而且通常並非關節已經壞死,而係 和關節生理、滑液循環、血液供應、肌肉張力 ...
魚醒味的科學:成因、風險與處理方法全面解析

魚醒味的科學:成因、風險與處理方法全面解析

「魚醒味」是華人烹飪文化中常見的說法,用以描述魚類在 解凍、切片或加熱後所突然出現的腥味、血水味或脂肪味。此現象並不代表食材變壞,但背後牽涉到蛋白質變化、脂肪氧化與揮發性化合物釋放等多種科學機制。本文將以科學角度剖析魚醒味的成因,並提供實證方法降低這種味道,同時探討其安全性。 🧪 什麼是「魚...