脈搏血氧儀

Pulse oximetry is a non-invasive way to monitor a person's blood oxygen saturation. Peripheral oxygen saturation (SPÒ 2) readings are typically accurate within 2% of arterial blood gas analysis, which is more ideal for reading arterial oxygen saturation. But the correlation between the two is good enough, so a safe, convenient, non-invasive, and cheap pulse oximetry measurement method is valuable for oxygen saturation measurement in clinical use.

The most common method is transmission pulse oximetry. In this method, the sensor device is placed on a thin part of the patient's body, usually the fingertips or earlobes, or a baby's feet. Fingertips and earlobes have higher blood flow than other tissues, which aids in heat transfer. The device directs two wavelengths of light through the body part to a photodetector. It measures the change in absorbance at each wavelength, thereby determining the absorbance caused solely by pulsating arterial blood.


Reflection pulse oximetry is a less common alternative to transmission pulse oximetry. This method does not require thin sections of the human body, making it ideal for general applications such as the feet, forehead, and chest, but it does have some limitations. Due to impaired venous return to the heart, vasodilation and venous blood pooling in the head can cause arterial and venous pulsations in the forehead area to combine and lead to false SpO2 results. This situation occurs while undergoing anesthesia with endotracheal intubation and mechanical ventilation or while the patient is in the head-down position.

medical use

A pulse oximeter is a medical device that indirectly monitors the oxygen saturation of a patient's blood (as opposed to measuring oxygen saturation directly from a blood sample) and changes in skin blood volume, producing a photoplethysmogram that can be further processed into other measurements. .Pulse oximeters can be integrated into multi-parameter patient monitors. Most monitors also display pulse rate. Portable battery-operated pulse oximeters can also be used for transport or home blood oxygen monitoring.

advantage

Pulse oximeters are particularly convenient for non-invasive, continuous measurement of blood oxygen saturation. In contrast, blood gas levels must be measured in a laboratory from a blood sample drawn. Pulse oximetry can be used in any setting where patient oxygenation is unstable, including critical care, surgery, recovery, emergency and hospital ward settings, pilots on unpressurized aircraft, to assess oxygenation in any patient, and to determine supplementation Oxygen availability or need. Although a pulse oximeter is used to monitor oxygenation, it cannot determine oxygen metabolism, or the amount of oxygen the patient is using. To do this, carbon dioxide (CO2) levels also need to be measured. It may also be used to detect abnormalities in ventilation. However, the use of pulse oximetry to detect hypoventilation is compromised by the use of supplemental oxygen because respiratory dysfunction can only be reliably detected when the patient is breathing room air. Therefore, if the patient is able to maintain adequate oxygenation on room air, routine supplemental oxygen may not be necessary as this may result in undetectable hypoventilation.

Due to its simplicity of use and ability to provide continuous and instantaneous oxygen saturation values, pulse oximeters are vital in emergency medicine and are useful for respiratory or heart problems especially COPD or for diagnosing some sleep disorders such as apnea and breathing insufficient. For people with obstructive sleep apnea, pulse oximeter readings will be in the 70-90% range most of the time they are trying to fall asleep.

Portable battery-operated pulse oximeters are useful for pilots operating in non-pressurized aircraft requiring supplemental oxygen above 10,000 feet (3,000 meters) or 12,500 feet (3,800 meters) in the United States. Portable pulse oximeters are also useful for climbers and athletes whose oxygen levels may decrease at high altitudes or during exercise. Some portable pulse oximeters use software to chart a patient's blood oxygen and pulse as a reminder to check blood oxygen levels.

Advances in connectivity allow patients to continuously monitor their blood oxygen saturation without cables connected to hospital monitors, without sacrificing the flow of patient data back to bedside monitors and centralized patient monitoring systems.

In COVID-19 patients, pulse oximetry can help detect silent hypoxia early, where the patient still looks and feels comfortable, but their SpO2 is very low. This happens to patients in the hospital or at home. Low SpO2 may indicate severe pneumonia related to COVID-19, requiring a ventilator.

limit

Pulse oximetry only measures hemoglobin saturation, not ventilation, and is not a complete measurement of respiratory function. It is not a substitute for blood gases tested in the laboratory because it does not show base deficiency, carbon dioxide levels, blood pH, or bicarbonate (HCO 3 - ) concentration. Oxygen metabolism can be easily measured by monitoring exhaled CO2 , but saturation data provides no information about blood oxygen content. Most of the oxygen in the blood is carried by hemoglobin; in severe anemia, there is less hemoglobin in the blood, and although the hemoglobin is saturated, it still cannot carry as much oxygen.

Because pulse oximeter devices are calibrated in healthy subjects, accuracy is poor in critically ill patients and premature infants.

Falsely low readings may be caused by hypoperfusion of the limb being monitored (usually due to cold limb, or vasoconstriction due to use of vasopressors); incorrect sensor application; highly calloused skin; or movement ( such as shivering), especially during periods of low perfusion. To ensure accuracy, the sensor should return stable pulses and/or pulse waveforms. Pulse oximetry technology varies in its ability to provide accurate data during exercise and low perfusion conditions.

Obesity, hypotension (low blood pressure), and some hemoglobin variations can reduce the accuracy of the results. Some home pulse oximeters have very low sampling rates, which can significantly underestimate drops in blood oxygen levels. ] The accuracy of pulse oximetry decreases significantly when readings fall below 80%.

Pulse oximetry is also not a complete measure of circulating oxygen sufficiency. If there is insufficient blood flow or hemoglobin in the blood (anemia), the tissues will be starved of oxygen despite high arterial oxygen saturation.

Because pulse oximeters only measure the percentage of bound hemoglobin, false high or false low readings can occur when hemoglobin is bound to something other than oxygen:

  • Hemoglobin has a higher affinity for carbon monoxide than for oxygen, and high readings may occur even though the patient is actually hypoxemic. In the case of carbon monoxide poisoning, this inaccuracy may delay recognition of hypoxia (low cellular oxygen levels).
  • Readings are higher in cyanide poisoning because it reduces the extraction of oxygen from arterial blood. In this case, there is no error in the reading because arterial blood oxygenation is indeed high in early cyanide poisoning.
  • In the mid-1980s, methemoglobinemia was characterized as causing pulse oximetry readings.
  • COPD [especially chronic bronchitis] may cause false readings.

One non-invasive method that allows continuous measurement of hemoglobin abnormalities is the pulse oximeter, manufactured in 2005 by Masimo. By using additional wavelengths, it provides clinicians with a way to measure hemoglobin abnormalities, carboxyhemoglobin and methemoglobin, as well as total hemoglobin.

Common pulse oximeter devices may have higher error rates in adults with darker skin tones, research suggests, raising concerns that inaccuracies in pulse oximeter measurements could be exacerbated in countries with racially diverse populations such as the United States. of systemic racism. Pulse oximetry is used to screen for sleep apnea and other types of sleep breathing disorders, which are more common among minorities in the United States.

equipment

In addition to pulse oximeters for professional use, there are many inexpensive "consumer" models. Opinions about the reliability of consumer oximeters vary; a typical comment is "Study data on home monitors are mixed, but they tend to be accurate within a few percentage points." Some smartwatches with activity tracking capabilities include an oximeter feature.

mobile application

Mobile app pulse oximeters use a flashlight and phone camera instead of the infrared light used by traditional pulse oximeters. However, the app cannot produce accurate readings because the camera cannot measure light reflection at both wavelengths, so oxygen saturation readings obtained through the app on a smartphone are inconsistent with clinical use. In fact, one study shows these are unreliable. So even though pulse oximeters aren't perfect, they're still much more accurate than smartphone app pulse oximeters.

mechanism

A blood oxygen monitor shows the percentage of oxygen in the blood. More specifically, it measures the percentage of hemoglobin (the protein in the blood that carries oxygen) that is loaded. For patients without lung disease, the acceptable normal Sa O range is 95% to 99%. For people breathing room air at or near sea level, arterial pO 2 can be estimated from blood oxygen monitor "peripheral oxygen saturation" (SpO 2 ) readings.

Operation method

A typical pulse oximeter uses an electronic processor and a pair of small light-emitting diodes (LEDs) that face a photodiode through a translucent part of the patient's body (usually a fingertip or earlobe). One LED is red with a wavelength of 660 nm and the other is infrared with a wavelength of 940 nm. The absorption of light at these wavelengths differs significantly between oxygenated and deoxygenated blood. Oxygenated hemoglobin absorbs more infrared light and allows more red light to pass through. Deoxygenated hemoglobin allows more infrared light to pass through and absorbs more red light. The LEDs cycle sequentially, one on, then the other, and then off approximately 30 times per second, which allows the photodiodes to respond to red and infrared light separately and adjust to the ambient light baseline.

The amount of light transmitted (in other words, the amount of light that is not absorbed) is measured and a separate normalized signal is produced for each wavelength. These signals fluctuate over time because the amount of arterial blood present increases with each heartbeat. By subtracting the minimum transmitted light from the transmitted light at each wavelength, the effects of other tissues are corrected to generate a continuous signal for pulsatile arterial blood. The ratio of the red light measurement to the infrared light measurement (representing the ratio of oxyhemoglobin to deoxygenated hemoglobin) is then calculated by the processor and this ratio is then converted to SpO2 by the processor. Signal separation has other uses as well: typically the plethysmograph waveform representing the pulsatile signal ("volume wave") is displayed to visually display pulse and signal quality, and a numerical ratio between the pulsatile signal and baseline absorbance ("perfusion index") is available To assess perfusion.

Where HbO2 is oxyhemoglobin (oxyhemoglobin) and Hb is deoxygenated hemoglobin.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友一睇YouTube、打機、畫畫,突然叫佢,佢完全聽唔到。係咪扮聾?係咪發展遲緩?抑或專注力問題? 研究顯示,大部分情況完全正常,與腦部的「選擇性注意力(Selective Attention)」同「過度專注(Hyperfocus)」有關,不代表有疾病。 什麼是「選擇性注意力」?(Sele...
高血壓|隱形殺手的成因、統計數據與科學研究

高血壓|隱形殺手的成因、統計數據與科學研究

  高血壓|隱形殺手的成因、統計數據與科學研究 快速導讀 高血壓係全球最普遍、但最容易被忽視嘅慢性病之一。 超過一半患者完全無症狀,但長期會破壞血管、增加中風同心臟病風險。 主要成因包括:高鹽、肥胖、缺乏運動、低鉀、飲酒、睡眠窒息症、壓力、吸煙、腎病等。 全球研究顯示:高鹽攝取加上肥胖...
為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

肺癌一直是全球最常見、死亡率最高的癌症之一。令人憂心的是,大部分肺癌患者在早期(第一、二期)都沒有明顯症狀,往往直到腫瘤擴散、壓迫周邊結構或影響呼吸功能後才被發現。本文以科學角度深入講解:為何肺癌早期「靜悄悄」、身體不察覺?身體內部究竟發生了甚麼? 亦會加入實際的自我檢查策略與醫學建議。 一...
黑眼圈成因全解析:從生理、生活習慣到醫學對策

黑眼圈成因全解析:從生理、生活習慣到醫學對策

前言:為何黑眼圈總是揮之不去? 「黑眼圈」係現代人嘅常見問題之一。無論係通宵工作、壓力過大、過敏,甚至遺傳因素,都可能令眼底皮膚變黑或出現陰影。雖然多數情況屬於美容問題,但有時亦可能反映身體狀況,例如貧血、睡眠質素差、血液循環不良等 [1]。  一、黑眼圈的主要類型與成因 色素型黑眼圈(Pi...
智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

1. 前言 血氧飽和度(SpO₂)是評估呼吸、循環系統狀態的重要指標。近年來,市面上兩大類可穿戴設備用於血氧監測: 智慧手錶(如 Samsung Watch、Apple Watch) 專用血氧監測設備(如 O₂Ring、指夾式脈搏血氧儀) 兩種設備的設計目的、測量方式、準確性、監測...
血氧飽和度、氧氣下降與「警戒線」的科學探討

血氧飽和度、氧氣下降與「警戒線」的科學探討

1. 前言 血氧飽和度(SpO₂)即血液中氧合血紅蛋白佔總血紅蛋白的百分比,是臨床及居家監測呼吸、循環功能的重要指標。當血氧飽和度下降,可能反映體內氧的供應或運送出現問題(低氧血症、hypoxemia)或更廣泛的組織缺氧(hypoxia)[1][2]。本文旨在探討: 血氧飽和度正常範圍與變...
冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Ice Pack / Cold Therapy / Cryotherapy)係好多運動、急性受傷(如扭傷、撞擊、肌肉拉傷)時的第一時間處理方法。但不少人會疑惑: 「冰敷純粹止痛,定係真係會幫助組織修復?」「冰敷幾耐?冰敷幾多日?會唔會影響身體自然修復?」 本文從科學、醫學、運動治療角度,...
長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

前言:為何「坐耐、蹲耐、跪耐」之後會痛? 無論係坐喺電腦前、跪低執嘢、長時間翹腳、側睡又唔郁——好多人體驗過一樣情況: 「一動就痛、一企起身腳軟、膝蓋直唔到、關節卡卡聲,又或者要行幾步先鬆返。」 其實呢種情況係非常普遍,而且通常並非關節已經壞死,而係 和關節生理、滑液循環、血液供應、肌肉張力 ...
魚醒味的科學:成因、風險與處理方法全面解析

魚醒味的科學:成因、風險與處理方法全面解析

「魚醒味」是華人烹飪文化中常見的說法,用以描述魚類在 解凍、切片或加熱後所突然出現的腥味、血水味或脂肪味。此現象並不代表食材變壞,但背後牽涉到蛋白質變化、脂肪氧化與揮發性化合物釋放等多種科學機制。本文將以科學角度剖析魚醒味的成因,並提供實證方法降低這種味道,同時探討其安全性。 🧪 什麼是「魚...