肺癌檢測有什麼新技術?

In recent years, with the continuous advancement of science and technology, the methods of detecting and diagnosing lung cancer have also been significantly improved. The following is a detailed introduction to some of the latest technologies and methods:

Liquid Biopsy

mechanism

Liquid biopsies identify the presence of cancer by detecting circulating tumor DNA (ctDNA) and other cancer-related molecular changes from blood samples.

Statistical data

Research shows that the sensitivity and specificity of liquid biopsies vary across different cancer stages. For advanced cancer, the accuracy of liquid biopsy can reach more than 90% [1].

risk

This method is non-invasive and carries very low risks.

cost

Relatively high, but with the popularization and advancement of technology, the cost is expected to decrease.

Artificial Intelligence (AI) and Machine Learning

mechanism

AI and machine learning algorithms detect lung cancer by analyzing imaging data, such as CT scans and X-rays. These algorithms are able to identify patterns and anomalies that human radiologists might miss.

Statistical data

The accuracy of using AI to analyze CT scans can reach more than 95%, and can significantly reduce the false alarm rate [2].

risk

There is no direct risk, but data privacy and security need to be ensured.

cost

The initial cost is higher, but with the development of technology and the increase in applications, the cost will gradually decrease.

Next-generation sequencing technology (NGS)

mechanism

NGS uses high-throughput sequencing technology to sequence a wide range of genomes to identify genetic mutations and changes related to lung cancer.

Statistical data

NGS has high accuracy and sensitivity and can identify most known cancer-related gene mutations [3].

risk

It is a minimally invasive technique with low risk.

cost

Relatively expensive, but as the technology matures, the cost is gradually declining.

Low-dose spiral CT (LDCT)

mechanism

LDCT uses low doses of radiation to create detailed images of the lungs and is particularly suitable for high-risk groups such as smokers.

Statistical data

Research shows that LDCT can reduce lung cancer mortality by about 20% [4].

risk

Radiation exposure is low, but the cumulative effects of radiation still need to be considered with long-term use.

cost

Moderately high, but a worthwhile preventive screening approach for high-risk groups.

Biomarker analysis

mechanism

The presence of lung cancer is indicated by analyzing specific biomarkers in blood, sputum, or tissue samples. Common biomarkers include proteins, DNA mutations, and RNA expression.

Statistical data

Specificity and sensitivity vary depending on the marker and cancer stage, with detection accuracy of over 80% for some markers [5].

risk

Non-invasive or minimally invasive techniques with low risk.

cost

The cost is moderate and depends on the type of biomarker used.

Optical coherence tomography (OCT)

mechanism

OCT uses light waves to capture detailed images of lung tissue and is often used during bronchoscopy to evaluate suspicious areas.

Statistical data

OCT provides extremely high image resolution, which helps distinguish benign and malignant lesions [6].

risk

Minimally invasive technique with low risk.

cost

More expensive, often used in high-end medical equipment.

Positron emission tomography (PET)

mechanism

PET scans use radioactive tracers to highlight areas of high metabolic activity, which are often indicative of cancer.

Statistical data

PET is extremely accurate in staging cancer and assessing treatment response, and can significantly improve the accuracy of treatment planning [7].

risk

Radiation exposure is involved, but the risk is generally low.

cost

It is more expensive and often requires high-end medical equipment and specialized procedures.

references

  1. Alix-Panabières, C., & Pantel, K. (2014). Liquid biopsy: From discovery to clinical application. Journal of Clinical Oncology, 32 (6), 421-430. https://ascopubs.org/doi/full /10.1200/JCO.2012.45.8750
  2. Esteva, A., Kuprel, B., Novoa, RA, Ko, J., Swetter, SM, Blau, HM, & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542 (7639), 115-118. https://www.nature.com/articles/nature21056
  3. Chin, L., Hahn, WC, Getz, G., & Meyerson, M. (2011). Making sense of cancer genomic data. The New England Journal of Medicine, 366 (22), 2116-2125. https:// www.nejm.org/doi/full/10.1056/NEJMra1316189
  4. Aberle, DR, Adams, AM, Berg, CD, Black, WC, Clapp, JD, Fagerstrom, RM, ... & Sicks, JD (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine, 365 (5), 395-409. https://www.nejm.org/doi/full/10.1056/NEJMoa1102873
  5. Ludwig, JA, & Weinstein, JN (2005). Biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer, 5 (11), 845-856. https://www.nature.com/articles/nrc1739
  6. Huang, D., Swanson, EA, Lin, CP, Schuman, JS, Stinson, WG, Chang, W., ... & Fujimoto, JG (1991). Optical coherence tomography. Science, 254 (5035), 1178- 1181. https://www.science.org/doi/10.1126/science.1957169
  7. Wahl, RL, Jacene, H., Kasamon, Y., & Lodge, MA (2009). From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. Journal of Nuclear Medicine, 50 (5), 122S-150S . https://jnm.snmjournals.org/content/50/Supplement_1/122S

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
經痛治療點解咁多年都冇突破?最新方法、本地現況與未來方向

經痛治療點解咁多年都冇突破?最新方法、本地現況與未來方向

幾乎一半嘅世界人口,每個月都要面對一次——月經同經痛。由青春期到更年期,呢段時間長達三十幾年。雖然經痛唔係致命疾病,但對好多女性嚟講,每個月都係一次痛苦嘅循環,影響工作、學業同生活質素 [1]。咁問題嚟喇:點解咁多年嚟,經痛治療仲係停留喺熱水袋同布洛芬(ibuprofen)?

Celecoxib(西樂葆)介紹 — 藥理、歷史背景與臨床試驗

Celecoxib(西樂葆)介紹 — 藥理、歷史背景與臨床試驗

1. 藥物簡介與臨床用途 Celecoxib(商品名 Celebrex 等)係一種選擇性 COX-2 抑制劑,屬非類固醇抗炎藥(NSAID)。COX-2 喺炎症反應中會誘導前列腺素生成,從而引發疼痛及發炎;而 Celecoxib 有效抑制 COX-2,但對 COX-1 影響較少,因此相對常見 ...
用粟粉醃肉有乜科學根據?揭開中菜「滑肉」嘅秘密

用粟粉醃肉有乜科學根據?揭開中菜「滑肉」嘅秘密

前言:點解中餐炒肉咁滑? 好多香港人炒肉嘅時候都會發現,餐廳啲雞絲牛柳炒出嚟特別滑溜、唔鞋口。呢個秘密,唔喺高級食材,而係一個平凡但強大嘅材料——粟粉(Cornstarch)。 呢種技巧叫做**「走油前醃」或「滑油醃肉法」(Velveting)**,係中餐獨有技術之一,主要靠粟粉、蛋白、調味料...
咩係三價鐵(Fe³⁺)同二價鐵(Fe²⁺)?

咩係三價鐵(Fe³⁺)同二價鐵(Fe²⁺)?

當我哋講「鐵質」時,唔止係話有冇攝取足夠,而係講緊鐵喺人體內唔同形態(尤其係三價鐵 Fe³⁺ 同二價鐵 Fe²⁺)點樣被吸收、轉化、運輸同儲存,呢啲都深深影響生物可利用率

全面解構低鐵原因、病理機制及影響

全面解構低鐵原因、病理機制及影響

低鐵唔止係營養問題,仲可能係身體慢性警號

鐵質(iron)係人體不可或缺嘅微量元素,主要負責攜帶氧氣嘅血紅素(hemoglobin)製造、能量代謝、免疫調節等。當鐵質長期攝取不足、吸收差、或失去過多,就會導致「低鐵」(iron deficiency)甚至發展成「缺鐵性貧血」(iron deficiency anemia)。本文將從臨床醫學與分子生理角度,深入探討低鐵嘅成因、病理機制、生物轉化過程,以及其對人體造成嘅連鎖影響。

Obefazimod(ABX464):潰瘍性結腸炎新藥研究、作用機制與研發進展

Obefazimod(ABX464):潰瘍性結腸炎新藥研究、作用機制與研發進展

Obefazimod(又名 ABX464)係由法國生物科技公司 Abivax 開發嘅口服小分子創新藥,目標治療慢性發炎性腸道疾病(IBD),特別係潰瘍性結腸炎(UC)同克羅恩氏病(CD)患者。

夢遺係唔係一定關性事?

夢遺係唔係一定關性事?

夢遺,即係在無意識之下於睡眠中射精,係一種常見於青春期男生甚至成年男性身上的自然生理現象。夢遺唔等於一定發生性夢,也唔等於有性慾過強。它與睡眠週期中快速動眼期(REM sleep)嘅勃起模式有關,亦可能反映正常的荷爾蒙波動及精液排出節律。 咩係夢遺? 夢遺(nocturnal emission...
唔凍都會打冷震?

唔凍都會打冷震?

打冷震(shivering)唔一定因為天氣凍,喺情緒波動、發燒初期、焦慮、緊張等情況下都可以出現。打冷震係一種由大腦下視丘控制嘅「非意識性肌肉收縮」,目的係維持或調節核心體溫或應對突發壓力。了解打冷震背後嘅神經與體溫調節原理,可以幫我哋區分「正常生理反應」同「潛在疾病警號」。 打冷震係乜回事...
一緊張就流手汗?

一緊張就流手汗?

手掌汗腺主要受交感神經系統控制。當人面對壓力、驚訝、社交場合等刺激時,大腦會啟動「戰鬥或逃跑反應」,促使手掌、腳底等部位產生明顯出汗。這種情況屬於精神性出汗,與溫度無直接關係,係身體對外在壓力的自然反應。