運動中的紅細胞:運動和訓練對紅細胞供氧的影響
टिप्पणियाँ 0

लाल रक्त कोशिकाओं का मुख्य कार्य श्वसन गैसों का परिवहन करना है। फेफड़ों में, ऑक्सीजन (O 2 ) साँस की हवा से वायुकोशीय अवरोध के माध्यम से रक्त में फैलती है, जहां इसका अधिकांश भाग हीमोग्लोबिन (Hb) के साथ मिलकर ऑक्सीजन युक्त Hb बनाता है, एक प्रक्रिया जिसे ऑक्सीजनेशन कहा जाता है। एचबी लाल रक्त कोशिकाओं में निहित है और हृदय प्रणाली के माध्यम से प्रसारित होता है, ओ को परिधि तक पहुंचाता है जहां यह एचबी बांड (डीऑक्सीजनेटेड) से मुक्त होता है और कोशिका में फैल जाता है। परिधीय केशिकाओं से गुजरते हुए, कोशिकाओं द्वारा उत्पादित कार्बन डाइऑक्साइड (सीओ 2 ) लाल रक्त कोशिकाओं तक पहुंचता है, जहां ऊतकों और लाल रक्त कोशिकाओं में कार्बोनिक एनहाइड्रेज़ (सीए) अधिकांश सीओ 2 को बाइकार्बोनेट (एचसीओ - 3 ) में परिवर्तित करता है। कार्बन मोनोऑक्साइड भी एचबी से बंधता है, अधिमानतः डीऑक्सीजनेटेड एचबी के माध्यम से कार्बोक्सिल बांड बनाता है। CO के दोनों रूपों को फेफड़ों में ले जाया जाता है, जहां CA HCO - 3 को वापस CO में बदल देता है। एचबी से जुड़ने से CO2 भी मुक्त होती है और साँस छोड़ने के लिए वायुकोशीय दीवारों में फैल जाती है।

ओ2 के एचबी परिवहन के जैविक महत्व को एनीमिया द्वारा अच्छी तरह से दर्शाया गया है, जिसमें कम एचबी कार्डियक आउटपुट में वृद्धि के बावजूद व्यायाम प्रदर्शन को भी कम कर देता है और कुल एचबी बढ़ने पर एरोबिक व्यायाम प्रदर्शन में सुधार होता है। चित्र 1, O2 पृथक्करण वक्र सामान्य बनाम एनीमिया एचबी की प्रबलता को दर्शाता है, यह दर्शाता है कि O2 ( PO2 ) के किसी भी आंशिक दबाव पर, रक्त में O2 सामग्री रक्त में Hb एकाग्रता के साथ बदल जाती है। न केवल इसकी मात्रा बल्कि एचबी के कार्यात्मक गुण भी प्रदर्शन को प्रभावित करते हैं। बढ़ी हुई एचबी- आत्मीयता को फेफड़ों में लोडिंग और हाइपोक्सिक वातावरण में जीवित रहने के पक्ष में देखा गया, जबकि इसे एचबी-ओ आत्मीयता में कमी से दर्शाया गया था। जब एटीपी की मांग अधिक होती है, जैसे कि कंकाल की मांसपेशियों के व्यायाम के दौरान, ऑक्सीडेटिव फॉस्फोराइलेशन का समर्थन करने के लिए एफ़िनिटी एचबी अणुओं से ओ की रिहाई का पक्ष लेती है।

O2 परिवहन के बावजूद, लाल रक्त कोशिकाएं कई अन्य कार्य करती हैं, जो एथलेटिक प्रदर्शन को भी बढ़ा सकते हैं। शायद सबसे महत्वपूर्ण रक्त पीएच में परिवर्तन को बफर करने में लाल रक्त कोशिकाओं की भूमिका है, दोनों CO2 के परिवहन द्वारा और H+ को हीमोग्लोबिन से बांधकर। लाल रक्त कोशिकाएं उच्च तीव्रता वाले व्यायाम के दौरान कंकाल की मांसपेशियों की कोशिकाओं से निकलने वाले लैक्टेट जैसे मेटाबोलाइट्स को भी अवशोषित करती हैं। लाल रक्त कोशिकाओं के अंतर्ग्रहण से मेटाबोलाइट्स की प्लाज्मा सांद्रता कम हो जाती है। अंत में, एरिथ्रोसाइट्स वैसोडिलेटर एनओ जारी करके परिधीय संवहनी प्रतिरोध को कम करने में सक्षम प्रतीत होते हैं और एटीपी जारी करके एंडोथेलियल एनओ गठन को उत्तेजित करते हैं, जिससे आर्टेरियोलर वासोडिलेशन होता है और स्थानीय रक्त प्रवाह में वृद्धि होती है।

हीमोग्लोबिन ऑक्सीजन बन्धुता

हीमोग्लोबिन द्वारा O2 परिवहन को अनुकूलित करने का प्राथमिक तंत्र Hb-O2 आत्मीयता में परिवर्तन है। परिवर्तन बहुत तेजी से होते हैं और वास्तव में तब होते हैं जब लाल रक्त कोशिकाएं केशिकाओं से गुजरती हैं। O2 परिवहन पर परिवर्तित Hb-O2 आत्मीयता का प्रभाव परिसंचारी Hb सांद्रता और कुल Hb द्रव्यमान से स्वतंत्र है और इसलिए एरिथ्रोपोएसिस में बढ़े हुए परिवर्तनों द्वारा नियंत्रित होता है।

हीमोग्लोबिन में बहुत अधिक आंतरिक O2 बन्धुता होती है। इसलिए, ऐसे एलोस्टेरिक प्रभावकों की आवश्यकता है जो एचबी-ओ2 आत्मीयता को कम करते हैं, जिससे एचबी अणुओं से ओ2 को उतारने की अनुमति मिलती है। मानव एरिथ्रोसाइट्स में एचबी-ओ आत्मीयता को नियंत्रित करने वाले प्रमुख एलोस्टेरिक प्रभावकारक ऑर्गेनोफॉस्फेट जैसे 2,3-बिस्फोस्फोग्लिसरेट (2,3-डीपीजी) और एडेनोसिन ट्राइफॉस्फेट (एटीपी), एच और सीओ, और सीएल - हैं। संचित लैक्टेट का प्रत्यक्ष प्रभाव व्यायाम के दौरान एचबी-ओ2-आत्मीयता अस्पष्ट है और यह सीएल-एचबी से जुड़ने और कार्बामेट के गठन पर न्यूनतम प्रभाव के कारण हो सकता है। लैक्टेट का अप्रत्यक्ष प्रभाव सीएल पर प्रभाव के कारण हो सकता है - एमसीटी-1 द्वारा मध्यस्थता वाले एच + और लैक्टेट की सांद्रता और अवशोषण। व्यायाम से जुड़ा एचबी-ओ आत्मीयता का एक अन्य न्यूनाधिक शरीर के तापमान में परिवर्तन है। चित्र 1 से पता चलता है कि एसिडोसिस और सीओ और 2,3-डीपीजी में वृद्धि किसी भी एचबी एकाग्रता पर एचबी-ओ संबंध को कम कर देती है। सीएल - विवो में बहुत कम बदलता है और इसलिए इसे ग्राफ़ में नहीं दिखाया गया है। इसके अलावा, तापमान बढ़ने से एचबी-ओ बन्धुता कम हो जाती है। ये परिवर्तन ODC को दाईं ओर स्थानांतरित कर देते हैं, ग्राफ़िक रूप से दिखाते हैं कि Hb(SO2) की O2 संतृप्ति किसी भी PO2 पर घट जाती है। इसके विपरीत, क्षारमयता, CO2, 2,3-DPG में कमी, और तापमान किसी दिए गए PO2 पर SO2 को बढ़ाने के लिए Hb-O2 की आत्मीयता को बढ़ाते हैं।

बढ़ी हुई एचबी-ओ आत्मीयता का शारीरिक महत्व यह है कि पीओ कम होने पर एचबी से ओ का बंधन बेहतर होता है। इसलिए, यह हाइपोक्सिक स्थितियों के संपर्क में आने वाले व्यक्तियों में अत्यधिक धमनी विसंतृप्ति को रोक सकता है। एचबी-ओ आत्मीयता कम होने से उच्च ओ मांग वाली कोशिकाओं तक ओ डिलीवरी में सुधार होता है, जैसे कि मांसपेशियों का व्यायाम करना।

व्यायाम के दौरान एचबी-ओ आत्मीयता

व्यायाम के दौरान, बढ़ी हुई ऑक्सीजन की मांग को मांसपेशियों में रक्त के प्रवाह में वृद्धि के साथ-साथ एचबी-ओ2 संबंध को कम करके एचबी से बेहतर ओ2 अनलोडिंग द्वारा पूरा किया जा सकता है। यह स्पष्ट है कि यदि एचबी-ओ आत्मीयता में कमी प्रणालीगत है - यानी, परिसंचरण में सभी लाल रक्त कोशिकाओं में - तो यह फेफड़ों में एचबी के धमनी ओ लोडिंग को ख़राब कर देगा। इसलिए, यह फायदेमंद होगा यदि एचबी-ओ2 आत्मीयता को दोनों कार्यों, फेफड़ों में ऑक्सीजनेशन और परिधीय रक्त केशिकाओं में डीऑक्सीजनेशन, को पूरा करने के लिए स्थानीय रूप से समायोजित किया गया था। इसलिए, जब लाल रक्त कोशिकाएं उच्च O2 मांग वाले ऊतकों से गुजरती हैं तो Hb-O2 आत्मीयता कम होनी चाहिए, और जब लाल रक्त कोशिकाएं फेफड़ों में लौटती हैं तो बढ़नी चाहिए। यह वास्तव में फेफड़ों और कामकाजी मांसपेशियों में केशिकाओं के बीच पीएच, सीओ2 और तापमान में महत्वपूर्ण अंतर के कारण होता है। 2,3-डीपीजी एचबी-ओ2 आत्मीयता के प्रमुख एलोस्टेरिक प्रभावकों में से एक है और व्यायाम परीक्षण के दौरान कोई बदलाव नहीं देखा गया क्योंकि 2,3-डीपीजी धीरे-धीरे बदलता है और लाल रक्त कोशिकाओं में ग्लाइकोलाइसिस दर को समायोजित करने के लिए आवश्यक है। हालाँकि, प्रशिक्षण के बाद 2,3-डीपीजी बढ़ा हुआ पाया गया। इसे व्यायाम के दौरान O2 उतारने के लिए फायदेमंद माना जा सकता है क्योंकि यह Hb-O2 आत्मीयता पर एसिडोसिस के प्रभाव को बढ़ाता है। प्रशिक्षित व्यक्तियों में ऊंचा 2,3-डीपीजी उत्तेजित एरिथ्रोपोएसिस का परिणाम हो सकता है, जो एरिथ्रोसाइट उम्र कम कर देता है। वृद्ध एरिथ्रोसाइट्स की तुलना में, युवा एरिथ्रोसाइट्स में उच्च चयापचय गतिविधि, उच्च 2,3-डीपीजी और कम एचबी-ओ2 आत्मीयता होती है।

O2 को व्यायाम करने वाली मांसपेशियों में उतारा जाता है। व्यायाम करने वाली मांसपेशी कोशिकाएं H+, CO2 और लैक्टिक एसिड को केशिकाओं में छोड़ती हैं, और काम करने वाली मांसपेशियों में तापमान भी निष्क्रिय ऊतकों की तुलना में अधिक होता है। व्यायाम करने वाली मांसपेशियों की केशिकाओं में प्रवेश करने वाला रक्त इन परिवर्तनों से काफी प्रभावित होता है, जिसके परिणामस्वरूप एचबी-ओ संबंध में तेजी से कमी आती है। P50 का मान लगभग 34-48 mmHg है और इसका अनुमान रक्त गैसों में परिवर्तन से लगाया जा सकता है। आराम के दौरान तापमान 37°C से बढ़कर व्यायाम के दौरान 41°C हो गया। क्योंकि मेटाबोलाइट्स के मिश्रण से रक्त की संरचना में निरंतर परिवर्तन होता है क्योंकि नया रक्त केशिकाओं में प्रवेश करता है, केशिका के धमनी पक्ष पर P50 मान इसके शिरापरक अंत से कम होता है, जिसके परिणामस्वरूप केशिका के भीतर ओडीसी का एक बड़ा दायां बदलाव होता है, जिससे काफी वृद्धि होती है 2 के एचबी अनलोडिंग में ओ। यह आराम के सापेक्ष व्यायाम स्थितियों के तहत केशिका रक्त में ओडीसी के दाहिने हिस्से के व्यापक आंदोलन से भी प्रमाणित होता है (चित्र 2; 2; अंक डी और बी, क्रमशः)। प्रशिक्षित व्यक्तियों में कम SO2 पर बोह्र प्रभाव अधिक होता है, संभवतः ऊंचे 2,3-DPG के कारण, जिसके परिणामस्वरूप धमनीशिरापरक O2 अंतर में अधिक वृद्धि हो सकती है।

धमनी O2 भार कामकाजी मांसपेशियों से फेफड़ों तक के रास्ते में, निष्क्रिय मांसपेशियों और अन्य अंगों से रक्त के मिश्रण से रक्त में H+ और CO2 की सांद्रता कम हो जाती है। वायुकोशीय गैस विनिमय के कारण, वायुकोशीय केशिकाओं में CO2 कम हो जाती है, जिससे रक्त और अधिक क्षारीय हो जाता है। इसलिए, एचबी-ओ आत्मीयता पर इन मेटाबोलाइट्स का प्रभाव काम करने वाली मांसपेशियों के सापेक्ष फेफड़ों में कम हो जाता है। फेफड़ों का तापमान भी काम करने वाली मांसपेशियों की तुलना में कम होता है। हालाँकि, ज़ोरदार व्यायाम के दौरान, एचबी-ओ आत्मीयता का सामान्य मूल्य पूरी तरह से बहाल नहीं हुआ था, जो कि आराम की स्थिति के सापेक्ष व्यायाम की स्थिति के तहत ओडीसी के दाहिने हिस्से में मामूली बदलाव से प्रकट हुआ था (चित्र 2; 2; अंक ए) और सी)। विचलन का आकार सक्रिय मांसपेशियों की मात्रा और व्यायाम की तीव्रता पर निर्भर करता है। व्यायाम के दौरान रक्त गैस डेटा से अनुमान लगाया जा सकता है कि O2 (P50 मान) का आधा-संतृप्त तनाव आराम के समय लगभग 27 mmHg से बढ़कर ज़ोरदार व्यायाम के दौरान धमनी रक्त में 34 mmHg तक हो सकता है। एचबी-ओ आत्मीयता में यह कमी धमनी ओ लोडिंग को बाधित करती है और उच्च तीव्रता वाले व्यायाम के दौरान धमनी एसओ को आराम के समय लगभग 97.5% से घटाकर लगभग 95% कर देती है। प्रशिक्षित व्यक्तियों में 2,3-डीपीजी बढ़ने से धमनी एसओ 2 में और कमी आ सकती है। कम एचबी-ओ2 आत्मीयता के प्रभावों के अलावा, एसओ2 और भी कम हो जाता है क्योंकि कार्डियक आउटपुट उच्च होने पर संपर्क समय कम होने से प्रसार सीमित हो जाता है और व्यायाम होने पर इसे बढ़ाया भी जा सकता है। हाइपोक्सिक परिस्थितियों में प्रदर्शन किया गया।
धमनी और मांसपेशियों के केशिका रक्त में एचबी-ओ आत्मीयता पर व्यायाम के दौरान अम्लीय मेटाबोलाइट्स और शरीर के तापमान में वृद्धि के प्रभावों की तुलना करने पर, यह स्पष्ट है कि कामकाजी मांसपेशियों में परिवर्तन फेफड़ों की तुलना में बहुत अधिक है। इसलिए, व्यायाम के दौरान धमनी की संतृप्ति की भरपाई आराम के सापेक्ष एचबी से उतारी गई O2 की अत्यधिक बढ़ी हुई मात्रा से आसानी से हो जाती है।

ऑक्सीजन वितरण क्षमता

यद्यपि केवल 0.03 मिली O2*L-1*mmHg-1 PO2 को 37°C पर भौतिक घोल में रक्त में ले जाया जा सकता है, एक ग्राम Hb लगभग 1.34 मिली O2 को बांध सकता है। इसलिए, रक्त की प्रति मात्रा में एचबी की सामान्य मात्रा की उपस्थिति से परिवहन योग्य O2 की मात्रा लगभग 70 गुना बढ़ जाती है, जो सामान्य ऊतकों की O2 आवश्यकताओं को पूरा करने के लिए बिल्कुल आवश्यक है। इसलिए यह स्पष्ट है कि एचबी की मात्रा बढ़ने से ओ2 की मात्रा भी बढ़ जाती है जिसे ऊतक तक पहुंचाया जा सकता है (चित्र 1)। वास्तव में, O परिवहन क्षमता सीधे तौर पर एरोबिक प्रदर्शन से संबंधित पाई गई है, जैसा कि लाल रक्त कोशिका आधान के बाद बेहतर प्रदर्शन और एथलीटों में कुल एचबी और अधिकतम O ग्रहण (वीओ, अधिकतम) के बीच एक मजबूत संबंध से प्रमाणित है। O2 वहन क्षमता में तीव्र हेरफेर भी प्रदर्शन को बदल सकता है। इसलिए, एरोबिक प्रदर्शन के लिए, उच्च O2 स्थानांतरण क्षमता होना एक स्पष्ट लाभ है।

O2 परिवहन क्षमता का आकलन करने के लिए आवश्यक पैरामीटर रक्त में एचबी एकाग्रता (सीएचबी) और हेमटोक्रिट (एचसीटी), साथ ही परिसंचरण में कुल एचबी द्रव्यमान (टीएचबी) और कुल कणिका मात्रा (टीईवी) हैं। मानक रुधिर विज्ञान प्रयोगशाला उपकरणों का उपयोग करके सीएचबी और एचसीटी को मापना आसान है। SO2 के साथ मिलकर, वे O2 की मात्रा का प्रतिनिधित्व करते हैं जिसे कार्डियक आउटपुट की प्रति इकाई परिधि तक पहुंचाया जा सकता है। tHb और tEV रक्त के माध्यम से पहुंचाई जा सकने वाली O2 की कुल मात्रा को दर्शाते हैं। बड़े tHb और tEV कम सक्रिय ऊतकों में बेसल O2 आपूर्ति को बनाए रखते हुए उच्च O2 मांग वाले अंगों में O2 के पुनर्निर्देशन की अनुमति देते हैं। चूँकि वे प्लाज्मा आयतन (पीवी) में परिवर्तन से प्रभावित होते हैं, cHb और Hct क्रमशः tHb और tEV के बारे में निष्कर्ष नहीं निकाल सकते हैं।

सीएचबी, एचसीटी, और लाल रक्त कोशिका गिनती के परिणाम एथलीटों में होते हैं और स्वस्थ, गतिहीन व्यक्तियों के साथ उनकी तुलना परस्पर विरोधी होती है क्योंकि लाल रक्त कोशिका की मात्रा और पीवी स्वतंत्र रूप से भिन्न होती है और क्योंकि कई कारक इनमें से प्रत्येक पैरामीटर को प्रभावित करते हैं। एथलीटों के लिए tHb और tEV के सामान्य मूल्यों को निर्धारित करना रक्त और एरिथ्रोपोइटिन (ईपीओ) उत्तेजक जैसे एरोबिक क्षमता बढ़ाने वाले तरीकों का उपयोग करने की संभावना से और भी बाधित होता है।

एथलीटों का हेमेटोक्रिट

कई, लेकिन सभी नहीं, अध्ययनों से पता चलता है कि एथलीटों में गतिहीन नियंत्रण की तुलना में एचसीटी (हेमटोक्रिट स्तर रक्त में लाल रक्त कोशिकाओं का प्रतिशत) कम होता है। हालाँकि, कुछ अध्ययनों ने सामान्य एचसीटी से अधिक की भी सूचना दी है। अत्यधिक बढ़ा हुआ एचसीटी रक्त की चिपचिपाहट बढ़ाता है और हृदय पर कार्यभार बढ़ाता है। इसलिए, इससे हृदय पर अत्यधिक भार पड़ने का जोखिम रहता है।

कई अध्ययनों से पता चलता है कि गतिहीन लोगों की तुलना में एथलीटों में एचसीटी कम होता है। एथलीटों के लिए संदर्भ एचसीटी और एचबी मान स्थापित करने की प्रक्रिया में। अध्ययन में पाया गया कि विभिन्न देशों के लगभग 1,100 एथलीटों में से 85% महिला और 22% पुरुष एथलीटों का एचसीटी मान 44% से कम था। यह भी दिखाया गया है कि एचसीटी को प्रशिक्षण स्थिति के साथ नकारात्मक रूप से सहसंबंधित करने की प्रवृत्ति है, जिसे वीओ 2, मैक्स द्वारा दर्शाया गया है। हालाँकि, गतिहीन नियंत्रण और एथलीटों का एक छोटा सा हिस्सा सामान्य एचसीटी से अधिक था। अध्ययन में, 1.2% महिलाओं और 32% पुरुषों में एचसीटी >47% था। जब 43 महीने की अध्ययन अवधि के दौरान महिला और पुरुष विशिष्ट एथलीटों और नियंत्रणों का पालन किया गया, तो 6 पुरुष नियंत्रणों और 5 पुरुष एथलीटों में एचसीटी >50% और 5 महिला एथलीटों में एचसीटी >47% था, लेकिन किसी भी महिला एथलीटों में एचसीटी >47% नहीं था।

व्यायाम के दौरान हेमटोक्रिट एचसीटी में परिवर्तन तेजी से होता है। जब व्यायाम के दौरान द्रव प्रतिस्थापन अपर्याप्त होता है, तो व्यायाम के दौरान एचसीटी पीवी में कमी के कारण बढ़ जाता है। पसीने के परिणामस्वरूप, आसमाटिक रूप से सक्रिय मेटाबोलाइट्स के संचय के साथ-साथ केशिका हाइड्रोस्टैटिक दबाव में वृद्धि के कारण निस्पंदन के कारण प्लाज्मा पानी बाह्य कोशिकीय स्थान में स्थानांतरित हो जाता है। प्लाज्मा प्रोटीन में परिणामी वृद्धि से आसमाटिक दबाव बढ़ जाता है, जिससे द्रव का निकास नियंत्रित हो जाता है। तैराकी के दौरान परिवर्तन दौड़ने की तुलना में कम स्पष्ट प्रतीत होते हैं, ऐसे में विसर्जन और रक्त की मात्रा के पुनर्वितरण के परिणामस्वरूप मात्रा-विनियमन करने वाले हार्मोन से स्वतंत्र पीवी में परिवर्तन होता है। प्लीहा में कैटेकोलामाइन-प्रेरित लाल रक्त कोशिकाओं के पृथक्करण के कारण हेमाटोक्रिट में वृद्धि मनुष्यों में होने की संभावना नहीं है, लेकिन अन्य प्रजातियों में पाया गया है।
600 से अधिक स्वस्थ, धूम्रपान न करने वाले, ज्यादातर गतिहीन व्यक्तियों पर किए गए 12 अध्ययनों की हालिया समीक्षा में, दिनों से लेकर 2 महीने की अवधि में हेमाटोक्रिट में दीर्घकालिक परिवर्तन की सूचना दी गई थी। 18 जांचों के डेटा को संक्षेप में प्रस्तुत किया गया और यह पाया गया कि प्रशिक्षण के बाद पीवी और रक्त की मात्रा तेजी से बढ़ी, जबकि लाल रक्त कोशिका की मात्रा बढ़ने से पहले कई दिनों तक अपरिवर्तित रही, यह दर्शाता है कि एचसीटी मान कई दिनों में कम हो गया। एचसीटी परिवर्तनों की तीव्रता प्रशिक्षण के दौरान व्यायाम की तीव्रता और प्रकार पर निर्भर करती प्रतीत होती है। प्रशिक्षण हस्तक्षेप के कुछ सप्ताह बाद, एक नई स्थिर स्थिति स्थापित हो जाती है और एचसीटी पूर्व-प्रशिक्षण मूल्यों पर लौट आता है। प्रशिक्षण के बाद और उच्च प्रशिक्षित एथलीटों में पीवी में वृद्धि एल्डोस्टेरोन-निर्भर गुर्दे Na+ पुनर्अवशोषण के साथ-साथ व्यक्तिगत प्रशिक्षण के दौरान पानी की कमी की भरपाई के लिए ऊंचे एंटीडाययूरेटिक हार्मोन द्वारा प्रेरित जल प्रतिधारण के परिणामस्वरूप हो सकती है।
एचसीटी में काफी मौसमी भिन्नता (15% तक सापेक्ष भिन्नता) प्रतीत होती है, गर्मियों में मान सर्दियों की तुलना में कम होता है, जिसके परिणामस्वरूप अंतर-मौसमी भिन्नता हो सकती है, गर्मियों में लगभग 42% और सर्दियों में 48%, जैसा कि देखा गया है हजारों अध्ययन प्रतिभागियों में। मौसमी परिवर्तन जलवायु प्रभावों पर निर्भर करते हैं, भूमध्य रेखा के करीब के देशों में अधिक अंतर होता है। एथलीटों में एचसीटी में मौसमी बदलावों के अध्ययन विरल हैं, लेकिन सुझाव देते हैं कि प्रशिक्षण प्रभावों में वृद्धि के माध्यम से गर्मियों में एचसीटी को अतिरिक्त 1-2% तक कम किया जा सकता है।

कुल हीमोग्लोबिन द्रव्यमान (tHb) और कुल कणिका आयतन (tEV)

जैसा कि ऊपर उल्लेख किया गया है, पीवी में तीव्र परिवर्तन होने का खतरा होता है, जबकि एरिथ्रोपोएसिस की धीमी दर के कारण कुल लाल रक्त कोशिका द्रव्यमान (या मात्रा) में परिवर्तन धीमा होता है। इसलिए, ऑक्सीजन परिवहन क्षमता का एक विश्वसनीय माप प्राप्त करने के लिए सीएचबी और एचसीटी के अलावा, कुल हीमोग्लोबिन और/या लाल रक्त कोशिका की मात्रा को मापा जाना चाहिए। इन मापदंडों को निर्धारित करने के लिए कई विधियाँ लागू की गई हैं।

एक व्यक्ति रक्त की मात्रा मापने के लिए कार्बन मोनोऑक्साइड (सीओ) पुनर्श्वसन विधि का उपयोग कर रहा है। यह विधि इस तथ्य पर आधारित है कि सीओ के लिए एचबी की आत्मीयता ओ की तुलना में बहुत अधिक है, जो संकेतक कमजोर पड़ने की विधि में सीओ के उपयोग की अनुमति देती है। इसका उपयोग शरीर के वजन के सापेक्ष रक्त द्रव्यमान के अनुपात को मापने के लिए किया गया है। कार्बोक्सीहीमोग्लोबिन के आकलन के लिए बेहतर तरीकों से इस तकनीक में काफी सुधार हुआ है। आज तक, CO पुनर्श्वसन या अंतःश्वसन में और सुधार किया गया है। फिर एमसीएचसी का उपयोग टीवीईवी की गणना के लिए किया जाता है, और एचसीटी का उपयोग कुल रक्त मात्रा का अनुमान लगाने के लिए किया जाता है। कुल लाल रक्त कोशिका की मात्रा को 99m टीसी-लेबल लाल रक्त कोशिकाओं के इंजेक्शन के बाद सीधे मापा जा सकता है। अप्रत्यक्ष तरीकों से, एल्ब्यूमिन-बाउंड इवांस ब्लू (टी-1824) का उपयोग करके और 125-आयोडीन-लेबल एल्ब्यूमिन इंजेक्ट करके पीवी को मापने के बाद एचसीटी से कुल लाल रक्त कोशिका की मात्रा की गणना भी की जा सकती है। इनमें से कई तरीकों की तुलना की गई। आई-एल्ब्यूमिन और इवांस ब्लू के लिए 125 मापा पीवी के साथ आर = 0.99 के सहसंबंध की सूचना दी, और दिखाया कि लेबल किए गए लाल रक्त कोशिकाओं के साथ टीवीई माप से गणना की गई पीवी लेबल किए गए एल्ब्यूमिन की तुलना में लगभग 5-10% कम थी।

इन तकनीकों को लागू करना आदि। प्रशिक्षित व्यक्तियों में tHb बढ़ा हुआ पाया गया, जिसके परिणामस्वरूप विभिन्न प्रशिक्षण स्थिति वाले व्यक्तियों के समूहों की तुलना करके और विस्तारित प्रशिक्षण अवधि से पहले और बाद में tEV को मापकर कई बार पुष्टि की गई है। हाल ही में निष्कर्ष निकाला गया कि विभिन्न प्रशिक्षण विधियों का टीएचबी पर अलग-अलग प्रभाव पड़ता है, और उन्होंने मुख्य रूप से हाइपोक्सिक प्रशिक्षण पर जोर दिया। कुल मिलाकर, इन अध्ययनों से पता चलता है कि टीएचबी में 1 ग्राम की वृद्धि के लिए, उदाहरण के लिए, एरिथ्रोपोइटिन, वीओ 2 के प्रशासन से, अधिकतम लगभग 3 मिली/मिनट की वृद्धि होती है। यह निष्कर्ष निकाला जा सकता है कि शरीर के वजन के प्रति किलोग्राम 1 ग्राम tHb ​​की वृद्धि (जी/किग्रा) वीओ 2, अधिकतम लगभग 5.8 मिली/मिनट/किग्रा बढ़ जाएगी, जबकि गैर-एथलीटों के लिए (हालांकि वीओ 2 काफी अधिक है) ), अधिकतम 45 मिली/मिनट/किग्रा) का tHb 11 ग्राम/किग्रा था और उनके सर्वश्रेष्ठ एथलीट (मतलब VO 2, अधिकतम = 71.9 मिली/किग्रा) का tHb 14.8 ग्राम/किग्रा था। उनके निष्कर्ष अच्छे समझौते में हैं रिपोर्ट किए गए परिणामों से, जिसमें पाया गया कि कुलीन एथलीटों का tHb अप्रशिक्षित लोगों की तुलना में 37% अधिक है। उनके कई अध्ययनों के परिणामों को मिलाकर, यह पाया गया कि tHb में प्रत्येक 1 ग्राम/किग्रा परिवर्तन के लिए, VO 2, अधिकतम में परिवर्तन पुरुषों में 4.2 मिली/मिनट/किग्रा और महिलाओं में 4.4 मिली/मिनट/किलोग्राम था। बहुत उच्च सहसंबंध गुणांक (आर ~ 0.79), जबकि वीओ 2,मैक्स और एचबी या एचसीटी के बीच कोई संबंध नहीं है। हालाँकि, गतिहीन और प्रशिक्षित व्यक्तियों के बीच tHb में अंतर की कमी भी बताई गई है। जैसा कि ऊपर उल्लेख किया गया है, इन सभी अध्ययनों में यह अनिश्चितता है कि एथलीटों ने प्रदर्शन में सुधार के लिए कदम उठाए होंगे, जिससे एथलीटों के लिए tHb और tEV के लिए "सामान्य मान" निर्धारित करना मुश्किल हो गया है।

व्यायाम प्रशिक्षण की विभिन्न अवधि (सप्ताह बनाम महीने) टीबी और प्रशिक्षण अध्ययन में विभिन्न परिणामों की व्याख्या करती प्रतीत होती है। सोका एट अल. (2000) जब प्रशिक्षण अवधि 11 दिनों से कम थी तो कोई वृद्धि नहीं हुई। इसके अलावा, 4-12 महीने के प्रशिक्षण के अधिकांश अध्ययन कोई या केवल छोटे प्रभाव नहीं दिखाते हैं; "मनोरंजक एथलीटों" के अपने स्वयं के अनुदैर्ध्य अध्ययन के परिणामस्वरूप 9 महीने के धीरज प्रशिक्षण के दौरान tHb में लगभग 6% की वृद्धि हुई, यह सुझाव देते हुए कि प्रशिक्षण tHb को समायोजित करता है और टीवीईवी धीरे-धीरे, और महत्वपूर्ण वृद्धि के लिए वर्षों के प्रशिक्षण की आवश्यकता हो सकती है।

उच्च ऊंचाई वाले निवासियों में कम ऊंचाई वाले निवासियों की तुलना में tHb बढ़ा हुआ है, और कम ऊंचाई वाले निवासियों में रक्त की मात्रा ~ 80 से ~ 100 मिलीलीटर/किलोग्राम तक बढ़ी हुई पाई गई (हर्टाडो, 1964; सांचेज़ एट अल।, 1970)। उच्च-ऊंचाई वाले प्रवासियों के परिणाम बताते हैं कि, प्रशिक्षण के समान, tHb और रक्त की मात्रा में वृद्धि धीमी होती है, जिसके लिए हफ्तों से लेकर महीनों तक उच्च-ऊंचाई पर रहने की आवश्यकता होती है। उच्च ऊंचाई पर, यह वृद्धि पीवी में कमी से छिप सकती है। इसलिए, मध्यम और उच्च ऊंचाई पर अल्पकालिक प्रवास tHb और tEV में वृद्धि नहीं करता है। विभिन्न अध्ययनों के सारांश से पता चला है कि कुछ में चढ़ाई के साथ टीवीई में कोई बदलाव नहीं पाया गया, जबकि कुछ में अंतर पाया गया जिसे उच्च ऊंचाई के संपर्क की अवधि में अंतर द्वारा समझाया गया था। जब प्रवास लगभग 3 सप्ताह तक चला, तो टीवीईवी में प्रति सप्ताह 62 से 250 मिलीलीटर की वृद्धि पाई गई।

उच्च ऊंचाई पर चढ़ने और नॉर्मोक्सिया में प्रशिक्षण के दौरान टीईवी में वृद्धि के आधार पर, यह निष्कर्ष निकाला गया कि टीएचबी पर प्रशिक्षण और उच्च ऊंचाई के जोखिम के प्रभाव सिम्युलेटेड ऊंचाई या मध्यम या उच्च ऊंचाई पर चढ़ने पर योगात्मक और महत्वपूर्ण होने की संभावना है। नॉर्मोक्सिया में प्रशिक्षण से भी अधिक वृद्धि होनी चाहिए। हालाँकि, परिणाम असंगत थे, 2100 से 2400 मीटर की ऊंचाई पर 3-4 सप्ताह के प्रशिक्षण के बाद कोई प्रभाव नहीं पड़ने से लेकर महत्वपूर्ण वृद्धि तक। प्रभाव की कमी का एक कारण यह है कि बढ़ती ऊंचाई के साथ प्रदर्शन में कमी के कारण उच्च ऊंचाई पर प्रशिक्षण कम ऊंचाई की तुलना में कम तीव्र होता है। हाइपोक्सिया में समायोजन को "खत्म" करते हुए प्रशिक्षण दक्षता बढ़ाने के उद्देश्य से कई रणनीतियाँ विकसित की गई हैं, जिनमें से एक "स्लीप-हाई-ट्रेन-लो" प्रोटोकॉल है। में वर्तमान अवधारणाओं एवं चिंताओं की समीक्षा की गई है। परिणाम अस्पष्ट हैं और आमतौर पर tHb पर कोई प्रभाव नहीं पड़ता है। एक व्यापक विश्लेषण से पता चला है कि प्रति दिन 14 घंटे से अधिक समय तक हाइपोक्सिया के संपर्क में रहने से tHb और tEV में उल्लेखनीय वृद्धि होती है।

एरिथ्रोपोएसिस पर नियंत्रण बर्ट ने माना था कि उच्च ऊंचाई पर रहने से हीमोग्लोबिन में वृद्धि होती है और बाद में एचसीटी, एचबी और टीएचबी में वृद्धि होती है, जिसे बाद में एरिथ्रोपोइटिन के स्तर में वृद्धि के साथ जुड़ा हुआ माना जाता है। जब प्रेरित PO2 कम होता है, तो ऊंचा tEV कम धमनी O2 सामग्री की भरपाई करने के लिए सोचा जाता है। संवहनी एंडोथेलियल वृद्धि कारक वीईजीएफ रक्त वाहिका निर्माण को उत्तेजित करता है जो क्रोनिक हाइपोक्सिया में ऊतक O2 आपूर्ति सुनिश्चित करने का एक और तरीका है। दोनों प्रक्रियाएं विशिष्ट सिग्नलिंग मार्गों पर निर्भर करती हैं जो विशिष्ट लक्ष्य कोशिकाओं के भीतर हाइपोक्सिया को समझती हैं और विशिष्ट जीन की अभिव्यक्ति को नियंत्रित करती हैं।
ऐसा एक ऑक्सीजन-निर्भर तंत्र हाइपोक्सिया-प्रेरक कारक एचआईएफ की नियंत्रित अभिव्यक्ति के माध्यम से है। सक्रिय HIF में α और β सबयूनिट होते हैं। बीटा सबयूनिट (HIF-β, जिसे ARNT भी कहा जाता है) संवैधानिक रूप से व्यक्त किया जाता है और ऑक्सीजन के स्तर से सीधे प्रभावित नहीं होता है। α सबयूनिट के कई आइसोफॉर्म हैं, जिनमें से HIF-1α मुख्य रूप से ग्लाइकोलाइसिस जैसे चयापचय विनियमन को नियंत्रित करता है, जबकि HIF-2α को एरिथ्रोपोएसिस के प्रमुख नियामक के रूप में पहचाना गया है। हाइपोक्सिक स्थितियों के तहत, प्रोलिल हाइड्रॉक्सिलेज़ (पीडीएच) द्वारा एचआईएफ-α सबयूनिट का हाइड्रॉक्सिलेशन ओ 2 की कमी के कारण अवरुद्ध हो जाता है, जो एक प्रत्यक्ष सब्सट्रेट के रूप में आवश्यक है और फिर वैन हिप्पेल-लिंडौ ट्यूमर सप्रेसर पीवीएचएल-ई 3 हाइड्रॉक्सिलेशन-निर्भर पॉलीबीक्यूटिनेशन को अवरुद्ध करता है। लिगेज और बाद में प्रोटीसोमल क्षरण के परिणामस्वरूप एचआईएफ अल्फा सबयूनिट के प्रोटीन स्तर में वृद्धि होती है। स्थिरीकरण के बाद, α सबयूनिट नाभिक में प्रवेश करते हैं, जहां वे HIF-β के साथ मंद हो जाते हैं। डिमर जीन अभिव्यक्ति को प्रेरित करने के लिए जीन प्रमोटर क्षेत्र में एक विशिष्ट आधार अनुक्रम से जुड़ता है जिसे हाइपोक्सिया प्रतिक्रिया तत्व एचआरई कहा जाता है। स्थिरीकरण के अलावा, HIF-α सबयूनिट्स को ट्रांसक्रिप्शनल स्तर पर भी नियंत्रित किया जाता है।

संक्षेप में कहा गया है कि HIF-2α यकृत (भ्रूण) और गुर्दे (वयस्क) द्वारा ईपीओ उत्पादन का मुख्य नियामक है, लेकिन विभिन्न प्रत्यक्ष और अप्रत्यक्ष तंत्र भी हैं। हालाँकि यह उस समय HIF-2α के बजाय HIF-1α के प्रभाव से संबंधित था, यह देखा जा सकता है कि हाइपोक्सिया-नियंत्रित जीन अभिव्यक्ति न केवल ईपीओ की अभिव्यक्ति को नियंत्रित करती है, बल्कि ईपीओ की अभिव्यक्ति को भी नियंत्रित करती है। प्रोटीन जिनकी भूमिका एरिथ्रोपोइज़िस के लिए एक शर्त है, जैसे ईपीओ रिसेप्टर्स, फेरोपोर्टिन जो आंतों के लौह पुनर्अवशोषण में मध्यस्थता करते हैं, और परिधीय कोशिकाओं में लौह परिवहन के लिए आवश्यक ट्रांसफ़रिन और ट्रांसफ़रिन रिसेप्टर्स।

वयस्कों में, ईपीओ उत्पादन को नियंत्रित करने वाले ऑक्सीजन सेंसर गुर्दे में स्थित होते हैं, जहां ईपीओ-उत्पादक कोशिकाओं को वृक्क प्रांतस्था में पेरिटुबुलर फ़ाइब्रोब्लास्ट के रूप में दिखाया गया है। ईपीओ का उत्पादन दो प्रकार के हाइपोक्सिया से प्रेरित हो सकता है: एक यह है कि गुर्दे और अन्य ऊतकों में PO2 कम हो जाता है जबकि हीमोग्लोबिन एकाग्रता सामान्य होती है, जैसे हाइपोक्सिया और हाइपोक्सिया। दूसरे को एनेमिक हाइपोक्सिया कहा जाता है, जिसमें हीमोग्लोबिन एकाग्रता कम हो जाती है लेकिन धमनी PO2 सामान्य होती है, जिसके परिणामस्वरूप शिरापरक PO2 कम हो जाता है। ऐसा प्रतीत होता है कि किसी भी मामले में ईपीओ उत्पादन की प्रभावशीलता में कोई अंतर नहीं है। इन स्थितियों के मिश्रण के परिणामस्वरूप सामान्य पीओ और हीमोग्लोबिन सांद्रता पर गुर्दे में रक्त का प्रवाह कम हो सकता है, जिसके परिणामस्वरूप केशिका और शिरापरक पीओ भी कम हो सकता है। फ़ाइब्रोब्लास्ट द्वारा ईपीओ उत्पादन को नियंत्रित करने वाले सटीक तंत्र को पूरी तरह से समझा नहीं गया है, लेकिन ऐसा प्रतीत होता है कि इसमें मज्जा और कॉर्टेक्स के पास स्थित फ़ाइब्रोब्लास्ट की हाइपोक्सिया-निर्भर भर्ती शामिल है।

रक्त में जारी ईपीओ लाल रक्त कोशिका उत्पादन को उत्तेजित करने के अलावा कई कार्य करता है। अस्थि मज्जा में, ईपीओ एरिथ्रोइड द्वीप पूर्वज कोशिकाओं पर ईपीओ रिसेप्टर्स को बांधता है, जहां यह प्रसार को उत्तेजित करता है और नवगठित कोशिकाओं के एपोप्टोटिक विनाश को रोकता है। इससे हर बार अस्थि मज्जा से निकलने वाली लाल रक्त कोशिकाओं की मात्रा बढ़ जाती है, जिससे जब रिहाई की दर लाल रक्त कोशिका के विनाश से अधिक हो जाती है तो टीवीई में वृद्धि होती है।

एरिथ्रोपोएसिस पर व्यायाम और प्रशिक्षण का प्रभाव प्रशिक्षित एथलीटों में tHb और tEV में वृद्धि से संकेत मिलता है कि व्यायाम एरिथ्रोपोएसिस को उत्तेजित करता है। एक अन्य संकेत रेटिकुलोसाइट गिनती में वृद्धि है, जिसे सहनशक्ति प्रशिक्षण और शक्ति प्रशिक्षण इकाइयों के 1-2 दिन बाद देखा जा सकता है। लाल रक्त कोशिका उत्पादन पर एकल प्रशिक्षण इकाई के स्पष्ट प्रभाव के बावजूद, कई अध्ययनों से पता चला है कि एथलीटों में रेटिकुलोसाइट गिनती गतिहीन नियंत्रण से काफी भिन्न नहीं होती है, और मूल्य वर्षों से काफी स्थिर प्रतीत होते हैं। हालाँकि, एथलीटों में रेटिकुलोसाइट गिनती पूरे वर्ष काफी भिन्न होती है, रेटिकुलोसाइट गिनती आमतौर पर सीज़न की शुरुआत में अधिक होती है, लेकिन गहन प्रशिक्षण, प्रतियोगिता और सीज़न के अंत में कम होती है। हालाँकि, एथलीटों में रेटिकुलोसाइट्स के समयपूर्व रूपों के मार्कर बढ़ गए थे, जो उत्तेजित अस्थि मज्जा का संकेत देते थे।
यद्यपि हाइपोक्सिक और एनेमिक हाइपोक्सिया में एरिथ्रोपोएसिस का नियंत्रण अच्छी तरह से समझा जाता है, लेकिन नॉर्मोक्सिक स्थितियों के तहत प्रशिक्षण के दौरान एरिथ्रोपोएसिस को उत्तेजित करने वाले संकेत कम स्पष्ट हैं। हाइपोक्सिया के संपर्क में आने से ईपीओ में तेजी से वृद्धि होती है, लेकिन विभिन्न प्रकार के व्यायाम करने वाले अप्रशिक्षित और प्रशिक्षित व्यक्तियों में ईपीओ में कोई या केवल मामूली बदलाव नहीं देखा जाता है, जबकि रेटिकुलोसाइट गिनती में परिवर्तन का समय पाठ्यक्रम उच्च ऊंचाई के अनुरूप होता है। प्रभाव समान है। परिधीय रक्त में उच्च रेटिकुलोसाइट गिनती, निम्न माध्य एरिथ्रोसाइट उत्प्लावन घनत्व और माध्य एरिथ्रोसाइट हीमोग्लोबिन सांद्रता, और निम्न माध्य एरिथ्रोसाइट आयु (उच्च 2,3-DPG और P50, उच्च एरिथ्रोसाइट एंजाइम गतिविधि और क्रिएटिन) के अन्य मार्करों के बढ़े हुए स्तर पाए गए हैं। प्रशिक्षित व्यक्तियों के और बढ़े हुए लाल रक्त कोशिका कारोबार के संकेतक हैं जिससे एरिथ्रोपोएसिस उत्तेजित होता है। ये नवगठित लाल रक्त कोशिकाएं केशिकाओं के माध्यम से रक्त के प्रवाह को सुविधाजनक बनाती हैं क्योंकि उनमें झिल्ली की तरलता और विकृति अधिक होती है।

व्यायाम-प्रेरित एरिथ्रोपोइज़िस के लिए एक प्रासंगिक ट्रिगर के रूप में हाइपोक्सिया के बारे में तर्क विरल और अप्रत्यक्ष हैं। कठोर व्यायाम के दौरान भी, धमनी पीओ में केवल एक छोटी सी कमी होती है, जो अपने आप में गुर्दे के ईपीओ उत्पादन के लिए शायद ही कभी पर्याप्त होती है। हालाँकि, जैसे-जैसे व्यायाम की तीव्रता बढ़ती है, गुर्दे का रक्त प्रवाह काफी कम हो जाता है, जिससे गुर्दे की O2 आपूर्ति कम हो जाती है। वृक्क नलिकाओं में O2 की आपूर्ति और कम हो सकती है क्योंकि वृक्क कॉर्टिकल धमनियां और नसें समानांतर में चलती हैं, जिससे O2 विनिमय प्रसार की अनुमति मिलती है जिससे धमनी डीऑक्सीजनेशन हो सकता है। रीनल कॉर्टिकल एपिथेलियल कोशिकाओं द्वारा Na+ और पानी के पुनर्अवशोषण के लिए आवश्यक उच्च ऑक्सीजन खपत के कारण कॉर्टिकल नसों में PO कम होता है। इसलिए यह अनुमान लगाया जा सकता है कि व्यायाम के दौरान कम प्रवाह रीनल कॉर्टिकल पीओ को उस स्तर तक कम कर देता है जो व्यायाम के दौरान ईपीओ-उत्पादक फ़ाइब्रोब्लास्ट में महत्वपूर्ण पेरिटुबुलर हाइपोक्सिया का कारण बनता है, और व्यायाम की तीव्रता बढ़ने के साथ यह प्रभाव बढ़ जाता है। दिलचस्प बात यह है कि प्रशिक्षण ने गुर्दे के रक्त प्रवाह में कमी को कम कर दिया, जो चूहों में उच्च तीव्रता वाले अंतराल स्प्रिंट प्रशिक्षण की तुलना में सहनशक्ति के बाद अधिक स्पष्ट दिखाई दिया, जो प्रशिक्षित एथलीटों में कमजोर एरिथ्रोपोएटिक प्रतिक्रिया को समझा सकता है।

व्यायाम के दौरान एरिथ्रोपोइज़िस को प्रभावित करने वाले विभिन्न हास्य कारक भी बदलते हैं। एण्ड्रोजन लंबे समय से ईपीओ रिलीज की उत्तेजना, अस्थि मज्जा गतिविधि में वृद्धि, और लाल रक्त कोशिकाओं में लोहे के समावेश के माध्यम से एरिथ्रोपोएसिस पर उनके उत्तेजक प्रभावों के लिए जाने जाते हैं, जो एण्ड्रोजन थेरेपी के बाद पॉलीसिथेमिया द्वारा सबसे अच्छी तरह से चित्रित किया गया है। सहनशक्ति व्यायाम और प्रतिरोध प्रशिक्षण पुरुषों और महिलाओं दोनों में टेस्टोस्टेरोन के स्तर में अस्थायी वृद्धि का कारण बन सकता है। व्यायाम के बाद के मूल्य दोनों लिंगों में व्यायाम की तीव्रता के साथ भिन्न होते हैं। दिलचस्प बात यह है कि व्यायाम के बाद टेस्टोस्टेरोन का स्तर सीधे मूड के साथ बदलता रहता है, जो महिलाओं की तुलना में पुरुषों में अधिक स्पष्ट होता है।

कैटेकोलामाइन और कोर्टिसोल जैसे तनाव हार्मोन अस्थि मज्जा से रेटिकुलोसाइट्स की रिहाई को उत्तेजित करते हैं और एरिथ्रोपोएसिस को बढ़ा सकते हैं। एरिथ्रोपोएसिस वृद्धि हार्मोन और इंसुलिन जैसे विकास कारकों से भी उत्तेजित होता है, जो व्यायाम के दौरान भी बढ़ता है।

एथलीटों में कम एचसीटी को "व्यायाम एनीमिया" कहा जाता है। इसकी लंबे समय से व्याख्या व्यायाम के दौरान लाल रक्त कोशिकाओं के बढ़ते विनाश के रूप में की जाती रही है और इस प्रकार यह तिमाही में हीमोग्लोबिनुरिया की प्रसिद्ध घटना के समान प्रतीत होता है। लाल रक्त कोशिकाओं का इंट्रावास्कुलर विनाश 1000 और 4000 dyn/cm के बीच कतरनी तनाव के तहत होता है, जो आराम के समय शारीरिक मूल्यों से काफी ऊपर होता है। इसका संबंध व्यायाम की तीव्रता और प्रकार से है। धावक के पैर का आघात इंट्रावास्कुलर हेमोलिसिस का सबसे आम कारण है, जिसे अच्छे इनसोल से रोका जा सकता है। यह पर्वतारोहण, शक्ति प्रशिक्षण, कराटे, तैराक, बास्केटबॉल, केन्डो तलवारबाजी और ड्रमर में भी होता है। पाया गया है कि दौड़ने के व्यायाम से आराम के समय प्लाज्मा हीमोग्लोबिन लगभग 30 मिलीग्राम/लीटर से बढ़कर लगभग 120 मिलीग्राम/लीटर हो जाता है, जो दर्शाता है कि सभी परिसंचारी लाल रक्त कोशिकाओं का लगभग 0.04% नष्ट हो गया है। यह दिखाया गया है कि व्यायाम बढ़े हुए हैप्टोग्लोबिन से जुड़ी लाल रक्त कोशिका झिल्लियों की उपस्थिति को बदल देता है। वृद्ध एरिथ्रोसाइट्स विशेष रूप से व्यायाम-प्रेरित इंट्रावास्कुलर हेमोलिसिस के लिए अतिसंवेदनशील हो सकते हैं, जैसा कि कम औसत एरिथ्रोसाइट उत्प्लावक घनत्व से प्रकट होता है, और घनत्व वितरण वक्र प्रशिक्षित व्यक्तियों में युवा, कम घने कोशिकाओं की ओर तिरछा होता है, जैसा कि पाइरूवेट कीनेस गतिविधि के बढ़े हुए स्तर से प्रकट होता है, 2,3 -डीपीजी और पी 50, उच्च रेटिकुलोसाइट गिनती। चर्चा की जा रही "व्यायाम एनीमिया" के अन्य संभावित कारण पोषण संबंधी हैं, जैसे अपर्याप्त प्रोटीन का सेवन और रक्त लिपिड में परिवर्तन और आयरन की कमी।

निष्कर्ष के तौर पर

ऐसे कई तंत्र हैं जो व्यायाम के दौरान ऊतक ऑक्सीजन की आपूर्ति बढ़ाने में योगदान करते हैं। व्यायाम के दौरान, कंकाल की मांसपेशी O2 की मांग में वृद्धि मुख्य रूप से कार्डियक आउटपुट में वृद्धि, सक्रिय और निष्क्रिय अंगों के बीच रक्त प्रवाह वितरण को विनियमित करने और माइक्रोसिरिक्युलेशन को अनुकूलित करके मांसपेशियों के रक्त प्रवाह में वृद्धि से मेल खाती है। लाल रक्त कोशिकाएं नाइट्रेट से सीधे रूपांतरण के माध्यम से और एटीपी की रिहाई के माध्यम से वैसोडिलेटर एनओ प्रदान करके स्थानीय रक्त प्रवाह का समर्थन करती हैं, जो एंडोथेलियल एनओ रिलीज का कारण बनती है। किसी भी केशिका रक्त प्रवाह में, एचबी-ओ2 आत्मीयता को कम करके एचबी से कामकाजी मांसपेशियों की कोशिकाओं तक उतारे गए ओ2 की मात्रा को काफी बढ़ाया जा सकता है। ऐसा तब होता है जब कोशिकाएं मांसपेशियों की कोशिकाओं को आपूर्ति करने वाली केशिकाओं में प्रवेश करती हैं, जहां वे ऊंचे तापमान, एच+ और सीओ2 के संपर्क में आती हैं। प्रशिक्षण कंडीशनिंग के सभी स्तरों पर कामकाजी मांसपेशियों में O2 प्रवाह को बढ़ाता है: यह अधिकतम कार्डियक आउटपुट को बढ़ाता है, वास्कुलोजेनेसिस को उत्तेजित करके मांसपेशियों में रक्त के प्रवाह में सुधार करता है, और लाल रक्त कोशिकाओं के रियोलॉजिकल गुणों में सुधार करता है। प्रशिक्षण लाल रक्त कोशिका उत्पादन को उत्तेजित करके कुल हीमोग्लोबिन द्रव्यमान को बढ़ाता है, जिससे रक्त में O2 की मात्रा बढ़ जाती है। यह एरिथ्रोसाइट 2,3-डीपीजी को भी बढ़ाता है, जिससे अम्लीकरण-निर्भर ओ-रिलीज़ के प्रति एचबी-ओ आत्मीयता संवेदनशीलता बढ़ जाती है। यह प्रणाली कम-ऊंचाई वाले व्यायाम के लिए अनुकूलित प्रतीत होती है क्योंकि हाइपोक्सिक वातावरण में, धमनी पीओ में कमी, जो ओ प्रसार का प्राथमिक निर्धारक है, ऊपर वर्णित ओ परिवहन तंत्र द्वारा पूरी तरह से मुआवजा नहीं दिया जाता है, जिसके परिणामस्वरूप प्रदर्शन में कमी आती है हाइपोक्सिया की डिग्री वृद्धि के साथ बढ़ती है।

टिप्पणी

कृपया ध्यान दें कि टिप्पणियों को प्रकाशित करने से पहले अनुमोदित किया जाना चाहिए

स्वास्थ्य स्तंभ

View all
什麼是「操縱者」?

什麼是「操縱者」?

操縱者,也可以說成「擅用手段的人」,「心機重的人」。操縱者利用欺騙、影響或者其他形式的心理操控來控制或影響他人,以達到自己的目標。他們的行為通常包含使用隱蔽、間接或偷偷摸摸的手法來獲得他們想要的東西,往往是以犧牲他人為代價。以下是一些常見的特徵和手段: 欺騙: 他們可能會說謊或扭曲事實來誤...
什麼是肌肉抽搐?你需要去看醫生嗎?

什麼是肌肉抽搐?你需要去看醫生嗎?

肌肉抽搐,也稱為肌束顫動,是指身體各部分出現不自主的肌肉收縮。以下是肌肉抽搐的原因、症狀及管理方法的詳細介紹: 肌肉抽搐的原因 壓力和焦慮 高水平的壓力和焦慮會導致肌肉緊張和抽搐。身體對壓力的反應會觸發神經系統,導致肌肉不自主地收縮。 疲勞 過度使用或劇烈運動後的肌肉疲勞會導致肌...
蘋果與牙齒健康:保護牙齒的小技巧

蘋果與牙齒健康:保護牙齒的小技巧

蘋果因其豐富的營養成分和清爽的口感而受到廣泛喜愛。然而,蘋果的酸性和糖分也可能對牙齒健康產生影響。這篇文章將深入探討蘋果對牙齒健康的影響,並提供保護牙齒的小技巧。 1. 蘋果的酸性 蘋果含有天然的果酸,這些酸性物質在食用後會暫時降低口腔中的pH值,增加牙齒表面珐琅質的溶解風險。長期食用酸性食物...
蘋果籽的毒性:它們真的有毒嗎?

蘋果籽的毒性:它們真的有毒嗎?

蘋果籽內含有氰甙,這種化合物在體內會分解產生氰化物,這引起了人們對蘋果籽毒性的關注。這篇文章將深入探討蘋果籽的毒性及其對健康的影響。 1. 蘋果籽中的氰甙 氰甙是一種天然存在於某些植物中的化合物,蘋果籽中含有少量的氰甙,當這些氰甙進入人體後,會在酶的作用下分解產生氰化物。氰化物是一種劇毒物質,...
有機蘋果與傳統蘋果:哪個更健康?

有機蘋果與傳統蘋果:哪個更健康?

蘋果是我們日常生活中常見的水果之一,但在選擇時,很多人會糾結於是選擇有機蘋果還是傳統蘋果。這篇文章將詳細比較有機蘋果和傳統蘋果的健康優勢和劣勢。 1. 農藥殘留 有機蘋果在種植過程中不使用化學農藥,而是採用天然的防治方法,如生物控制和有機肥料。因此,有機蘋果上的農藥殘留相對較低,對於那些關心農...
艾草:益處,營養,副作用,評論和推薦產品

艾草:益處,營養,副作用,評論和推薦產品

亮點 什麼是艾草(Artemisia)? 背景和歷史 健康益處 使用方法 藥物互動 副作用和不利之處 產品類型和推薦產品 其他重要或有趣的信息 結論 什麼是艾草(Artemisia)? 艾草(Artemisia),又稱艾蒿,是一種常見的草本植物,廣泛分佈於亞洲、歐洲和北美洲。艾草...
紅麴米:益處,營養,副作用,評論和推薦產品

紅麴米:益處,營養,副作用,評論和推薦產品

亮點 什麼是紅麴米(Red Yeast Rice)? 背景和歷史 健康益處 使用方法 藥物互動 副作用和不利之處 產品類型和推薦產品 其他重要或有趣的信息 結論 什麼是紅麴米(Red Yeast Rice)? 紅麴米(Red Yeast Rice)是一種由紅麴菌(Monascus...
什麼是草藥膏?

什麼是草藥膏?

亮點 什麼是草藥膏(Herbal Salve)? 背景和歷史 健康益處 使用方法 藥物互動 副作用和不利之處 其他重要或有趣的信息 結論 什麼是草藥膏(Herbal Salve)? 草藥膏是一種外用製劑,由草藥提取物、蠟和油脂等成分製成,用於治療皮膚問題和促進傷口癒合。常見的草藥...
蘆薈:益處,營養,副作用,評論和推薦產品

蘆薈:益處,營養,副作用,評論和推薦產品

亮點 什麼是蘆薈(Aloe Vera)? 背景和歷史 健康益處 使用方法 藥物互動 副作用和不利之處 產品類型和推薦產品 其他重要或有趣的信息 結論 什麼是蘆薈(Aloe Vera)? 蘆薈(Aloe Vera),學名Aloe barbadensis miller,是一種多肉植物...