什麼是丙酮過氧化物/三過氧化三丙酮?

Use of Triacetone Triperoxide in the Food Industry

The food additive acetone peroxide can be safely used in flour, bread and rolls, as long as the identity standards do not prevent its use and meet the following requirements:
(a) This additive is a mixture of monomeric and linear dimeric acetone peroxide, along with small amounts of higher polymers, produced by the reaction of hydrogen peroxide and acetone.
(b) The additive can be mixed with an edible carrier to give a concentration of: (1) 3 to 10 grams of hydrogen peroxide equivalent per 100 grams of additive, plus carrier, for flour ripening and bleaching; (2) Per 100 grams of additive Gram additive is about 0.75 grams hydrogen peroxide equivalent, plus carrier, used for dough conditioning.
(c) It is used or intended to be used: (1) For the ripening and bleaching of flour, in amounts not exceeding those sufficient to achieve this effect; (2) As a coarse conditioning agent in the manufacture of bread and rolls, in amounts not exceeding The amount of hydrogen peroxide required for the artificial curing effect.
(d) To ensure the safe use of the additive, the label of a food additive container and any intermediate premix thereof shall contain, in addition to other information required by the Act:
(1) The name of the additive is "acetone peroxide".
(2) The concentration of the additive, expressed in terms of hydrogen peroxide equivalent per 100 grams.
(3) Provide adequate instructions for use of the end product that comply with the limitations specified in paragraph (c) of this section.

What is tripacetone triperoxide?

Acetone peroxide (also known as APEX and Mother Satan) is an organic peroxide and detonator. It is produced by the reaction of acetone and hydrogen peroxide to produce a mixture of linear monomers and cyclic dimers, trimers and tetramers. This dimer is called diacetone diperoxide (DADP). This trimer is called triacetone triperoxide (TATP) or tricycloacetone peroxide (TCAP). Acetone peroxide is a white crystalline powder with a unique bleach-like odor (when impure) or fruit-like odor when pure. If exposed to heat, friction, static electricity, concentrated sulfuric acid, or strong ultraviolet light, it will explode violently. radiation or shock. Until around 2015, explosives detectors were not programmed to detect non-nitrogen explosives, as most explosives used before 2015 were nitrogen-based. TATP does not contain nitrogen and has been used as the explosive of choice in several terrorist bombings since 2001.

Acetone peroxide history

Acetone peroxide (specifically tripacetone triperoxide) was discovered in 1895 by German chemist Richard Wolffenstein. Wolfenstein mixed acetone and hydrogen peroxide and then allowed the mixture to sit at room temperature for a week, during which time a small number of crystals precipitated, with a melting point of 97 °C (207 °F).

In 1899, Adolf von Baeyer and Victor Villiger described the first synthesis of dimers and described the synthesis of two peroxides using acids. Baeyer and Villiger prepared dimers by mixing potassium persulfate in diethyl ether with acetone under cooling. After separation of the ether layer, the product was purified and found to have a melting temperature of 132–133 °C (270–271 °F). They found that trimers could be prepared by adding hydrochloric acid to a frozen mixture of acetone and hydrogen peroxide. By using freezing point depression to determine the molecular weight of compounds, they also determined that acetone peroxide prepared through potassium persulfate is a dimer, while acetone peroxide prepared through hydrochloric acid is a trimer, just like the Wolfenstein compound.

This method and the various products obtained were further studied in the mid-20th century by Milas and Golubović.

Industrial applications

Ketone peroxides, including acetone peroxide and methyl ethyl ketone peroxide, are used as initiators in polymerization reactions in the manufacture of fiberglass-reinforced composite materials, such as silicones or polyester resins. For these uses, peroxides are usually in the form of dilute solutions in organic solvents; methyl ethyl ketone peroxide is more commonly used for this purpose because it is stable in storage.

Acetone peroxide is used as a flour bleach to bleach and "ripen" flour.

Acetone peroxide is an undesired by-product of some oxidation reactions, such as those used in the synthesis of phenol. Due to their explosive nature, their presence in chemical processes and chemical samples creates potentially hazardous situations. Accidents can occur in illegal MDMA laboratories. Many methods are used to reduce their occurrence, including adjusting the pH to a more alkaline state, adjusting the reaction temperature, or adding inhibitors to their production. For example, triacetone peroxide is the primary contaminant found in diisopropyl ether and is the result of photochemical oxidation in the air.

for improvised explosive devices

TATP has been used in bomb and suicide attacks as well as improvised explosive devices, including

  • London bombings on July 7, 2005
  • One of the explosives used in Richard Reid's failed shoe bomb attack in 2001
  • Suicide bomber attacks in Paris in November 2015
  • Used in the Brussels attacks in 2016
  • June 2017 Brussels attacks
  • 2019 Easter bombings in Sri Lanka.
  • Two kilograms of TATP were discovered in Hong Kong in 2019, amid massive protests against proposed laws allowing extradition to mainland China.

The TATP shock wave overpressure is 70% of the TNT equivalent, and the normal phase pulse is 55% of the TNT equivalent. The brightness of TATP at 0.4 g/cm3 is about one-third that of TNT (1.2 g/cm3) as measured by the Hess test.

TATP is attractive to terrorists because it is easily prepared from readily available retail ingredients such as bleach and nail polish remover. It is also able to evade detection because it is one of the few high explosives that does not contain nitrogen and can therefore pass undetected by standard explosives detection scanners, which have so far been designed to detect nitrogen-containing explosive. By 2016, explosives detectors had been improved to be able to detect TATP, and new types were developed.

The European Union has enacted legislative measures to limit the sale of hydrogen peroxide to concentrations of 12% or higher.

A major disadvantage of TATP is that it is very prone to accidental explosions, resulting in injuries and deaths of illegal bomb makers, which has led to TATP being called the "Mother of Satan". TATP was discovered in an accidental explosion before the 2017 terrorist attacks in Barcelona and surrounding areas.

High amounts of TATP synthesis are often exposed by excess bleach or fruity smells. The smell can even penetrate clothes and hair quite significantly, as was reported in the 2016 Brussels bombings.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
哪些職業對健康影響最大?科學與現實的分析

哪些職業對健康影響最大?科學與現實的分析

在現代社會中,工作佔據了人們生命中相當大的一部分。然而,不同職業對健康的風險並不相同。一些工作性質或環境,會顯著增加慢性病、心理壓力、甚至縮短壽命的風險。以下從科學研究與醫學角度,探討幾類對健康損害較大的職業,並附上相關統計數據。

電擊槍的機制與對人體健康影響

電擊槍的機制與對人體健康影響

在現代執法中,警察常使用所謂「非致命性武器」(less-lethal weapons),其中最廣為人知的便是 電擊槍(Taser)。電擊槍的設計初衷是提供一種介於徒手制服與槍械之間的選擇,藉由暫時性電擊使嫌疑人失去行動能力,以降低致命暴力發生的風險。然而,電擊槍並非完全無害,背後涉及的電流機制與人體生理反應值得深入探討。

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

腫瘤治療的新挑戰 近十年來,免疫檢查點抑制劑(Immune Checkpoint Inhibitors, ICIs)改變咗癌症治療格局。當中 PD-1/PD-L1 抑制劑 已經成為多種腫瘤的一線或二線療法,而 VEGF 抑制劑 亦係抗血管生成治療嘅核心藥物。然而,臨床數據顯示,雖然 PD-(L...
疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛一直是全球道路安全的重要議題。許多人將疲勞視為「只是累了」,但科學研究表明,當人處於極度疲倦時,大腦功能下降的程度可與酒精中毒相當。不僅如此,長時間駕駛還會對身體健康造成慢性負擔。隨著科技發展,越來越多可穿戴裝置被設計用來協助監測疲勞狀態,其中,日本 Medirom 公司開發的 REMONY 裝置近日獲得國土交通省(MLIT)認證,成為市場矚目的焦點。本文將先探討疲勞駕駛的健康風險,然後客觀分析 REMONY 裝置的技術特點與潛力。

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟皮膚為何容易出現問題? 腳跟係身體承受最大壓力嘅部位之一。每日行走、站立,腳跟長期摩擦同受壓,如果缺乏適當護理,就會導致角質層過度增厚、乾燥同龜裂。當角質層愈厚,皮膚顏色會慢慢變得偏黃,甚至暗啡。 造成腳跟黃、裂、脫皮的常見原因 角質層增厚長期行走或穿硬底鞋,令腳跟角質層積聚過多,顏色...
Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 幾乎已經變成日常生活不可或缺嘅一部分。無論係屋企、公司、學校,甚至咖啡店同巴士,都有無線網絡覆蓋。但好多讀者都會擔心:「成日浸喺 Wi-Fi 入面,會唔會慢慢影響身體健康?會唔會致癌?會唔會令我失眠或者精神差?」 今篇文章會由淺入深,帶大家了解 Wi-Fi 嘅電磁波特性、科學研究結...
長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

好多人每日要長時間坐喺辦公室、電腦前面,或者瞓覺時維持同一個姿勢。結果往往出現腰酸背痛、手腳麻痺,甚至覺得關節「鎖住」郁唔到。久坐傷身腳麻痺點解長時間坐姿影響健康,都係大家經常搜尋嘅問題。今次我哋就一齊睇下背後原因。

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症最令人畏懼的地方,不單在於原發腫瘤本身,而是它能夠 轉移(Metastasis) —— 由原本的器官擴散至身體其他部位。事實上,大多數癌症致命的原因,並非來自腫瘤的「原居地」,而是因為它在其他重要器官(如腦、肝、骨、肺)形成了新的腫瘤。

腦癌種類全面介紹|常見類型與特徵

腦癌種類全面介紹|常見類型與特徵

腦癌(Brain Cancer)泛指源自腦部或蔓延至腦部的惡性腫瘤。臨床上可分為兩大類: 原發性腦腫瘤(Primary Brain Tumors):由腦部細胞本身變異而成。 繼發性腦腫瘤(Secondary / Metastatic Brain Tumors):由其他器官的癌細胞(如肺...