什麼是Nirmatrelvir?

Nirmatrelvir is an antiviral drug developed by Pfizer as an orally active 3C-like protease inhibitor. It is part of the nirmatrelvir/ritonavir combination and is marketed under the brand name Paxlovid.

pharmaceutical

Coronavirus proteases cleave at multiple sites in the viral polyprotein, usually after glutamine residues. Early studies on related human rhinoviruses showed that flexible glutamine side chains can be replaced by rigid pyrrolidone. These drugs were further developed for other diseases, including SARS, before the COVID-19 pandemic. In 2018, GC376 (a prodrug GC373) was used to treat a previously 100% fatal feline coronavirus disease, feline infectious peritonitis, caused by feline coronavirus. Nirmatrelvir and GC373 are both peptide mimetics that share the above-mentioned pyrrolidone at the P1 position and are competitive inhibitors; however, they use nitriles and aldehydes, respectively, to bind the catalytic cysteine. Pfizer studied two series of compounds with nitriles and benzothiazol-2-yl ketones as reactive groups, ultimately settling on nitriles.

Nirmatrelvir was developed by modifying the early clinical candidate lufotrelvir, which is also a covalent protease inhibitor, but its warhead is a phosphate prodrug of a hydroxyketone. Lufotrelvir requires intravenous administration, limiting its use to hospital settings. Stepwise modification of tripeptide protein mimetics resulted in nimatravir suitable for oral administration. Key changes include reducing the number of hydrogen bond donors and reducing the number of rotatable bonds by introducing a rigid bicyclic ring Unconventional amino acids (specifically a "fused cyclopropyl ring with two methyl groups"), which mimic the leucine residue found in earlier inhibitors. This residue was previously used in the synthesis of boceprevir. Using combinatorial chemistry (hybrid combinatorial substrate library technology), the tertiary leucine (abbreviation: Tle) used at the P3 position of nimaprevir was identified for the first time as the best non-classical amino acid in potential drugs targeting SARS-CoV-2 3C-like protease. ).

However, leucine-like residues cause nearby loss of contact with glycine. To compensate, Pfizer tried adding methanesulfonamide, acetamide, and trifluoroacetamide, and found that trifluoroacetamide had excellent oral bioavailability.

Chemistry and Pharmacology

Full details of the synthesis of nirmatrelvir have been published for the first time by Pfizer scientists.

In the penultimate step, the synthesized homochiral amino acid is coupled to the homochiral aminoamide using the water-soluble carbodiimide EDCI as the coupling agent. The resulting intermediate is then treated with Burgess' reagent to dehydrate the amide group to the product nitrile.

Nirmatrelvir is a covalent inhibitor that binds directly to the catalytic cysteine ​​(Cys145) residue of caspases.

In the co-packaged drug nirmatrelvir/ritonavir, ritonavir slows the metabolism of nirmatrelvir through cytochrome enzyme inhibition, thereby increasing circulating concentrations of the primary drug. This effect is also used in HIV therapy, where ritonavir is combined with another protease inhibitor to similarly enhance its pharmacokinetics.

license

In November 2021, Pfizer signed a licensing agreement with the United Nations-backed Drug Patent Pool, allowing nirmatrelvir to be produced and sold in 95 countries. Pfizer said the agreement would allow local drug manufacturers to produce the pills "with the goal of promoting greater access to the global population". However, the agreement excludes several countries with major COVID-19 outbreaks, including Brazil, China, Russia, Argentina and Thailand.

Research

The research leading to nirmatrelvir began on March 16, 2020, when Pfizer officially launched a project at its Cambridge, Massachusetts, facility to develop an antiviral drug to treat COVID-19. [ On July 22, 2020, Pfizer chemists were able to synthesize nirmatrelvir for the first time, although the significance of that moment was unclear at the time, as it was just one of 20 drug candidates synthesized that week. On September 1, 2020, Pfizer completed a pharmacokinetic study in rats demonstrating that nimaprevir can be administered orally. The actual synthesis of drugs used in laboratory studies and clinical trials occurs at Pfizer's facility in Groton, Connecticut.

In February 2021, Pfizer initiated the company's first Phase I trial of PF-07321332 (nirmatrelvir) at its clinical research unit in New Haven, Connecticut. According to Chemistry & Engineering News , the drug “went from an idea to the first human clinical trial in 12 months—an incredible speed to deliver a custom drug candidate.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
菠蘿皮點解咁耐火?健康、環保同生活新用途大公開

菠蘿皮點解咁耐火?健康、環保同生活新用途大公開

菠蘿唔單止果肉好食,連個皮都有好多秘密。好多朋友試過將菠蘿皮掉去火堆,發現佢唔似紙咁「啪」一聲就燒起,而係慢慢冒煙、焦黑,甚至好耐都唔着火。點解會咁呢?原來同佢嘅纖維結構、含水量同天然成分有關。今次健康小豬就帶大家深入了解菠蘿皮嘅「耐火」秘密,仲會介紹幾個實用嘅 DIY 用途,包括煮茶、BBQ 煙燻、天然清潔劑同園藝肥料。

龍珠悟空的「自在極意」:在現實科學究竟是怎麼一回事?

龍珠悟空的「自在極意」:在現實科學究竟是怎麼一回事?

你可能有過這種體驗:臨睡未睡、剛醒未醒的一瞬間,腦海忽然變得超級靈活,點子像自動連線;等完全清醒,又好像沒那麼神了。動漫裡悟空進入「自在極意」像是把思考的阻力關掉,只剩本能與直覺在運作。科學上,這種「人間版自在極意」最接近的是入睡前後的邊緣狀態(N1/hypnagogia、或接近 REM 的過渡),它確實和創造力提升有關。

經痛治療點解咁多年都冇突破?最新方法、本地現況與未來方向

經痛治療點解咁多年都冇突破?最新方法、本地現況與未來方向

幾乎一半嘅世界人口,每個月都要面對一次——月經同經痛。由青春期到更年期,呢段時間長達三十幾年。雖然經痛唔係致命疾病,但對好多女性嚟講,每個月都係一次痛苦嘅循環,影響工作、學業同生活質素 [1]。咁問題嚟喇:點解咁多年嚟,經痛治療仲係停留喺熱水袋同布洛芬(ibuprofen)?

Celecoxib(西樂葆)介紹 — 藥理、歷史背景與臨床試驗

Celecoxib(西樂葆)介紹 — 藥理、歷史背景與臨床試驗

1. 藥物簡介與臨床用途 Celecoxib(商品名 Celebrex 等)係一種選擇性 COX-2 抑制劑,屬非類固醇抗炎藥(NSAID)。COX-2 喺炎症反應中會誘導前列腺素生成,從而引發疼痛及發炎;而 Celecoxib 有效抑制 COX-2,但對 COX-1 影響較少,因此相對常見 ...
用粟粉醃肉有乜科學根據?揭開中菜「滑肉」嘅秘密

用粟粉醃肉有乜科學根據?揭開中菜「滑肉」嘅秘密

前言:點解中餐炒肉咁滑? 好多香港人炒肉嘅時候都會發現,餐廳啲雞絲牛柳炒出嚟特別滑溜、唔鞋口。呢個秘密,唔喺高級食材,而係一個平凡但強大嘅材料——粟粉(Cornstarch)。 呢種技巧叫做**「走油前醃」或「滑油醃肉法」(Velveting)**,係中餐獨有技術之一,主要靠粟粉、蛋白、調味料...
咩係三價鐵(Fe³⁺)同二價鐵(Fe²⁺)?

咩係三價鐵(Fe³⁺)同二價鐵(Fe²⁺)?

當我哋講「鐵質」時,唔止係話有冇攝取足夠,而係講緊鐵喺人體內唔同形態(尤其係三價鐵 Fe³⁺ 同二價鐵 Fe²⁺)點樣被吸收、轉化、運輸同儲存,呢啲都深深影響生物可利用率

全面解構低鐵原因、病理機制及影響

全面解構低鐵原因、病理機制及影響

低鐵唔止係營養問題,仲可能係身體慢性警號

鐵質(iron)係人體不可或缺嘅微量元素,主要負責攜帶氧氣嘅血紅素(hemoglobin)製造、能量代謝、免疫調節等。當鐵質長期攝取不足、吸收差、或失去過多,就會導致「低鐵」(iron deficiency)甚至發展成「缺鐵性貧血」(iron deficiency anemia)。本文將從臨床醫學與分子生理角度,深入探討低鐵嘅成因、病理機制、生物轉化過程,以及其對人體造成嘅連鎖影響。

Obefazimod(ABX464):潰瘍性結腸炎新藥研究、作用機制與研發進展

Obefazimod(ABX464):潰瘍性結腸炎新藥研究、作用機制與研發進展

Obefazimod(又名 ABX464)係由法國生物科技公司 Abivax 開發嘅口服小分子創新藥,目標治療慢性發炎性腸道疾病(IBD),特別係潰瘍性結腸炎(UC)同克羅恩氏病(CD)患者。

夢遺係唔係一定關性事?

夢遺係唔係一定關性事?

夢遺,即係在無意識之下於睡眠中射精,係一種常見於青春期男生甚至成年男性身上的自然生理現象。夢遺唔等於一定發生性夢,也唔等於有性慾過強。它與睡眠週期中快速動眼期(REM sleep)嘅勃起模式有關,亦可能反映正常的荷爾蒙波動及精液排出節律。 咩係夢遺? 夢遺(nocturnal emission...