超氧化物歧化酶: 益處並應用

Superoxide Dismutase (SOD) is an antioxidant enzyme present in all living cells that protects cells from highly reactive, cell-damaging superoxide radicals (O2−).

Superoxide free radicals are very common free radicals that can cause various cell damages, and superoxide dismutase is an enzyme that catalyzes the conversion of superoxide free radicals into molecular oxygen and hydrogen peroxide, called catalase.

Superoxide dismutase is a key enzyme in free radical detoxification. Helps break down potentially harmful oxygen molecules in cells. It removes superoxide anions from extracellular sources, including ionizing radiation and oxidative damage, as well as superoxide anions generated mainly in the mitochondria as a by-product of O2 metabolism through the electron transport chain, and prevents the formation of hydroxyl radicals. This may prevent tissue damage.

Research shows that SOD enzyme can maintain the dynamic balance between the production and removal of biological oxidants in the body, prevent the toxic effects of free radicals, and has been proven to have anti-tumor, anti-radiation and anti-aging effects.

Some superoxide dismutase products are made from cows. Others are made from melons or created in labs.

mechanism

Superoxide dismutase (SOD) is an antioxidant enzyme that utilizes transition metal ions in its active site to remove oxygen free radicals. It converts O2•− into H2O2 while releasing molecular oxygen. SOD is found in plants, animals, and microorganisms and requires cofactors such as iron, manganese, copper, and zinc for optimal catalytic activity. These cofactors donate electrons to O2•− throughout the catalytic process.

SOD helps protect cells from oxygen free radical damage by balancing oxidant levels. It catalyzes O2•− to form H2O2 and regulates signaling in the body. H2O2 acts as a second messenger in processes such as inflammation and angiogenesis. It also uses AQP to transmit redox signals across cell membranes.

Enzymes called SOD enhance enzyme-substrate contact during reactions by generating an electric field and reducing search complexity. The loop with charged residues guides O2•− to the active site of Cu/Zn-SOD. By increasing the positive charge or accessibility, the efficiency of SOD is increased. SOD catalysis increases the reaction rate 10,000 times compared to spontaneous arrangement.

Oxygen-consuming metabolic reactions are the main cause of superoxide production. This may occur at various cellular sites including mitochondrial electron respiratory chain, NADPH oxidase NOX, cyclooxygenase, lipoxygenase, xanthine oxidase XO, cytochrome P450 oxidoreductase/cytochrome P450 reduction enzymes and various cell membranes. These reactions convert oxygen into superoxide.

Catalase, SOD and GSH-Px are part of the body's oxygen removal system and help remove and reduce harmful compounds. SOD also has the ability to bind to cell surfaces and is used in a variety of medical and skin care products for its antioxidant properties.

health benefits

Reduce inflammation

Superoxide dismutase acts as an anti-inflammatory agent. Superoxide dismutase studies have shown promising results as a therapeutic agent in humans for the treatment of acute and chronic inflammation.

When SOD levels were measured in patients with chronic inflammation, their enzyme activity was significantly lower than in healthy individuals. Researchers propose new therapeutic possibilities to target the superoxide dismutase antioxidant pathway, thereby limiting pro-inflammatory responses.

Relieve arthritis symptoms

An animal study found that reduced SOD levels were associated with the early stages of osteoarthritis. This enzyme is downregulated in osteoarthritic cartilage in both humans and mouse models.

Researchers say this may be due to increased oxidative stress and reduced SOD levels.

Help fight cancer

Studies have shown that low expression of extracellular superoxide dismutase is significantly associated with reduced survival in cancer patients. This suggests that low SOD levels promote an internal environment conducive to cancer progression.

Studies have shown that high levels of SOD can inhibit tumor growth and metastasis, indicating its role as a tumor suppressor.

Research demonstrating the use of dietary supplement-based superoxide dismutase for cancer prevention provides another opportunity for antioxidant-based cancer prevention. According to the researchers, new mechanistic studies demonstrate that SOD not only inhibits oncogenic activity but also inhibits subsequent metabolic changes during early tumorigenesis.

Promote skin health

Superoxide dismutase creams and other personal care products are used to reduce free radical damage to the skin and reduce signs of aging. The antioxidant effects of SOD promote the health and appearance of the skin and are often used to prevent wrinkles, fine lines, and age spots.

Superoxide dismutase for skin care also aids in wound healing, softening scar tissue and protecting skin from UV rays.

May help with gastrointestinal disorders

Research on the regulatory role of SODs in gastrointestinal diseases has attracted attention.

Knocking out the SOD gene in mice results in weight loss, cell barrier disruption and reduced antioxidant activity. SOD enzyme prevents colitis and affects cecal flora in mice. Mice with colitis show changes at the level of multiple immune cells. Downregulation of SOD causes liver damage and fibrosis in mice. Injection of SOD enzyme can prevent colitis. SOD can be used as a diagnostic marker to prevent colitis.

Aging management

The aging process is characterized by mitochondrial dysfunction, oxidative stress, functional decline, and apoptosis, accompanied by changes in the gastrointestinal flora.

One study found that extracellular superoxide dismutase expression levels were lower in aged skin tissue compared with young skin tissue, while copper-zinc superoxide dismutase and manganese-containing superoxide dismutase remained unchanged. Copper/zinc superoxide dismutase-deficient mice exhibit muscle atrophy and weakness similar to normal muscle aging, which can be prevented by extracellular superoxide dismutase expression. Treatment with recombinant extracellular superoxide dismutase reduced oxidant levels while increasing collagen secretion. Research results confirm the importance of SOD in anti-aging.

Applications of superoxide dismutase

Application of health care products

SOD widely exists in animals, plants and microorganisms. As a specific scavenger of superoxide anion free radicals and a high-quality regulator of various functions of the human body, it has been widely used in health care products.

Research has confirmed the effectiveness of oral SOD, so SOD can be directly used as a food additive, and many functional foods rich in superoxide dismutase have been developed.

Superoxide dismutase is most commonly used in adults at a daily oral dose of 140 IU for up to 4 months.

Superoxide dismutase supplements are used to boost the body's defenses against free radicals and inflammation, and they can be taken orally or injected to fight certain diseases . The appropriate dose of superoxide dismutase depends on your health, age, and gender.

In the past, superoxide dismutase supplements lacked health benefits because other enzymes and acids inactivated the enzyme during digestion. However, scientists have developed bioavailable supplements by combining enzymes with protective proteins from wheat and other plants. These proteins allow superoxide dismutase to pass intact through the intestines so that it can be absorbed into the bloodstream.

food application

As an antioxidant, SOD produces a large amount of O2•− during food production and transportation. These O2•− molecules react with nutrients such as ascorbic acid and tocopherol, but SOD counteracts this process. Therefore, SOD is considered a food preservative because of its ability to prevent quality degradation caused by peroxidation.

In China , SOD health product functional food standard requirements have been implemented, a SOD food market mechanism has been established, and the food industry has been encouraged to develop reasonable SOD applications.

Cosmetic applications

Direct skin contact with oxygen can cause skin aging and damage. SOD is known for its ability to scavenge free radicals, prevent skin aging, and promote collagen stability. It can also be used as a topical agent to treat skin redness and swelling, and to assist in sun protection.

Superoxide dismutase (SOD) has been widely used as an additive in daily chemical products, such as SOD toothpaste and other products.

Research shows that superoxide dismutase is safe as a cosmetic product and has no side effects. Animal studies show that SOD can penetrate and be absorbed through the skin.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

肺癌一直是全球最常見、死亡率最高的癌症之一。令人憂心的是,大部分肺癌患者在早期(第一、二期)都沒有明顯症狀,往往直到腫瘤擴散、壓迫周邊結構或影響呼吸功能後才被發現。本文以科學角度深入講解:為何肺癌早期「靜悄悄」、身體不察覺?身體內部究竟發生了甚麼? 亦會加入實際的自我檢查策略與醫學建議。 一...
黑眼圈成因全解析:從生理、生活習慣到醫學對策

黑眼圈成因全解析:從生理、生活習慣到醫學對策

前言:為何黑眼圈總是揮之不去? 「黑眼圈」係現代人嘅常見問題之一。無論係通宵工作、壓力過大、過敏,甚至遺傳因素,都可能令眼底皮膚變黑或出現陰影。雖然多數情況屬於美容問題,但有時亦可能反映身體狀況,例如貧血、睡眠質素差、血液循環不良等 [1]。  一、黑眼圈的主要類型與成因 色素型黑眼圈(Pi...
智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

1. 前言 血氧飽和度(SpO₂)是評估呼吸、循環系統狀態的重要指標。近年來,市面上兩大類可穿戴設備用於血氧監測: 智慧手錶(如 Samsung Watch、Apple Watch) 專用血氧監測設備(如 O₂Ring、指夾式脈搏血氧儀) 兩種設備的設計目的、測量方式、準確性、監測...
血氧飽和度、氧氣下降與「警戒線」的科學探討

血氧飽和度、氧氣下降與「警戒線」的科學探討

1. 前言 血氧飽和度(SpO₂)即血液中氧合血紅蛋白佔總血紅蛋白的百分比,是臨床及居家監測呼吸、循環功能的重要指標。當血氧飽和度下降,可能反映體內氧的供應或運送出現問題(低氧血症、hypoxemia)或更廣泛的組織缺氧(hypoxia)[1][2]。本文旨在探討: 血氧飽和度正常範圍與變...
冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Ice Pack / Cold Therapy / Cryotherapy)係好多運動、急性受傷(如扭傷、撞擊、肌肉拉傷)時的第一時間處理方法。但不少人會疑惑: 「冰敷純粹止痛,定係真係會幫助組織修復?」「冰敷幾耐?冰敷幾多日?會唔會影響身體自然修復?」 本文從科學、醫學、運動治療角度,...
長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

前言:為何「坐耐、蹲耐、跪耐」之後會痛? 無論係坐喺電腦前、跪低執嘢、長時間翹腳、側睡又唔郁——好多人體驗過一樣情況: 「一動就痛、一企起身腳軟、膝蓋直唔到、關節卡卡聲,又或者要行幾步先鬆返。」 其實呢種情況係非常普遍,而且通常並非關節已經壞死,而係 和關節生理、滑液循環、血液供應、肌肉張力 ...
魚醒味的科學:成因、風險與處理方法全面解析

魚醒味的科學:成因、風險與處理方法全面解析

「魚醒味」是華人烹飪文化中常見的說法,用以描述魚類在 解凍、切片或加熱後所突然出現的腥味、血水味或脂肪味。此現象並不代表食材變壞,但背後牽涉到蛋白質變化、脂肪氧化與揮發性化合物釋放等多種科學機制。本文將以科學角度剖析魚醒味的成因,並提供實證方法降低這種味道,同時探討其安全性。 🧪 什麼是「魚...
牛肉需唔需要清洗?科學解釋、處理方法與食安建議

牛肉需唔需要清洗?科學解釋、處理方法與食安建議

不少家庭煮食者都會問:「生牛肉需唔需要清洗先煮?」特別係買梅頭(Chuck Tender / Chuck Roll)呢類切件時,可能見到少量血水、碎肉、黏液,就會擔心細菌問題。根據多個食品安全機構研究,其實 生牛肉一般情況下無需清洗,而且清洗反而會提高交叉污染風險。 下文將由科學角度解釋理由,...
如何正確清洗草莓?鹽水、梳打粉、白醋邊樣最好?科學比較+實證指南

如何正確清洗草莓?鹽水、梳打粉、白醋邊樣最好?科學比較+實證指南

草莓鮮甜多汁,但表面凹凸、種子細小,容易殘留泥沙、蟲卵、細菌與農藥殘留。市面上很多清洗方法,包括鹽水、醋水、梳打粉、臭氧水等,但到底邊樣真正有效、又不會破壞草莓的營養與口感? 今次文章從 科學研究與食物安全角度 分析不同清洗方法的原理、有效程度與正確用法,並提供一套 最安全、最有效的草莓清洗流...