什麼是Nirmatrelvir?

Nirmatrelvir is an antiviral drug developed by Pfizer as an orally active 3C-like protease inhibitor. It is part of the nirmatrelvir/ritonavir combination and is marketed under the brand name Paxlovid.

pharmaceutical

Coronavirus proteases cleave at multiple sites in the viral polyprotein, usually after glutamine residues. Early studies on related human rhinoviruses showed that flexible glutamine side chains can be replaced by rigid pyrrolidone. These drugs were further developed for other diseases, including SARS, before the COVID-19 pandemic. In 2018, GC376 (a prodrug GC373) was used to treat a previously 100% fatal feline coronavirus disease, feline infectious peritonitis, caused by feline coronavirus. Nirmatrelvir and GC373 are both peptide mimetics that share the above-mentioned pyrrolidone at the P1 position and are competitive inhibitors; however, they use nitriles and aldehydes, respectively, to bind the catalytic cysteine. Pfizer studied two series of compounds with nitriles and benzothiazol-2-yl ketones as reactive groups, ultimately settling on nitriles.

Nirmatrelvir was developed by modifying the early clinical candidate lufotrelvir, which is also a covalent protease inhibitor, but its warhead is a phosphate prodrug of a hydroxyketone. Lufotrelvir requires intravenous administration, limiting its use to hospital settings. Stepwise modification of tripeptide protein mimetics resulted in nimatravir suitable for oral administration. Key changes include reducing the number of hydrogen bond donors and reducing the number of rotatable bonds by introducing a rigid bicyclic ring Unconventional amino acids (specifically a "fused cyclopropyl ring with two methyl groups"), which mimic the leucine residue found in earlier inhibitors. This residue was previously used in the synthesis of boceprevir. Using combinatorial chemistry (hybrid combinatorial substrate library technology), the tertiary leucine (abbreviation: Tle) used at the P3 position of nimaprevir was identified for the first time as the best non-classical amino acid in potential drugs targeting SARS-CoV-2 3C-like protease. ).

However, leucine-like residues cause nearby loss of contact with glycine. To compensate, Pfizer tried adding methanesulfonamide, acetamide, and trifluoroacetamide, and found that trifluoroacetamide had excellent oral bioavailability.

Chemistry and Pharmacology

Full details of the synthesis of nirmatrelvir have been published for the first time by Pfizer scientists.

In the penultimate step, the synthesized homochiral amino acid is coupled to the homochiral aminoamide using the water-soluble carbodiimide EDCI as the coupling agent. The resulting intermediate is then treated with Burgess' reagent to dehydrate the amide group to the product nitrile.

Nirmatrelvir is a covalent inhibitor that binds directly to the catalytic cysteine ​​(Cys145) residue of caspases.

In the co-packaged drug nirmatrelvir/ritonavir, ritonavir slows the metabolism of nirmatrelvir through cytochrome enzyme inhibition, thereby increasing circulating concentrations of the primary drug. This effect is also used in HIV therapy, where ritonavir is combined with another protease inhibitor to similarly enhance its pharmacokinetics.

license

In November 2021, Pfizer signed a licensing agreement with the United Nations-backed Drug Patent Pool, allowing nirmatrelvir to be produced and sold in 95 countries. Pfizer said the agreement would allow local drug manufacturers to produce the pills "with the goal of promoting greater access to the global population". However, the agreement excludes several countries with major COVID-19 outbreaks, including Brazil, China, Russia, Argentina and Thailand.

Research

The research leading to nirmatrelvir began on March 16, 2020, when Pfizer officially launched a project at its Cambridge, Massachusetts, facility to develop an antiviral drug to treat COVID-19. [ On July 22, 2020, Pfizer chemists were able to synthesize nirmatrelvir for the first time, although the significance of that moment was unclear at the time, as it was just one of 20 drug candidates synthesized that week. On September 1, 2020, Pfizer completed a pharmacokinetic study in rats demonstrating that nimaprevir can be administered orally. The actual synthesis of drugs used in laboratory studies and clinical trials occurs at Pfizer's facility in Groton, Connecticut.

In February 2021, Pfizer initiated the company's first Phase I trial of PF-07321332 (nirmatrelvir) at its clinical research unit in New Haven, Connecticut. According to Chemistry & Engineering News , the drug “went from an idea to the first human clinical trial in 12 months—an incredible speed to deliver a custom drug candidate.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
蘋果過敏:你可能不知道的口腔過敏綜合症

蘋果過敏:你可能不知道的口腔過敏綜合症

蘋果是一種廣受喜愛的健康水果,但對於某些人來說,食用蘋果可能會引發過敏反應,特別是口腔過敏綜合症(OAS)。這篇文章將深入探討蘋果過敏及其對健康的影響。 1. 什麼是口腔過敏綜合症(OAS)? 口腔過敏綜合症是一種由食物引起的過敏反應,通常發生在食用某些水果、蔬菜和堅果後。症狀包括口腔和喉嚨癢...
蘋果與美妝護膚:天然護膚秘方

蘋果與美妝護膚:天然護膚秘方

蘋果不僅是美味的水果,還具有多種美妝護膚的功效。這篇文章將介紹蘋果在美妝護膚中的應用,並分享一些簡單的天然護膚秘方,讓你在家中也能輕鬆享受蘋果的美容益處。 1. 蘋果的美容成分 蘋果富含多種對皮膚有益的成分,包括維生素C、維生素A、抗氧化劑和果酸。這些成分能夠幫助美白肌膚、抗氧化、保濕和促進膠...
蘋果的旅程:從果園到餐桌的過程

蘋果的旅程:從果園到餐桌的過程

蘋果是一種廣受歡迎的水果,但你是否知道它們從果園到餐桌的旅程是怎樣的呢?這篇文章將深入探討蘋果的生產、收穫、儲存和運輸過程,帶你了解蘋果的整個供應鏈。 1. 蘋果的種植 蘋果樹通常在春季開花,經過授粉後,花朵會逐漸變成小果實。蘋果的生長過程需要充足的陽光、水分和營養,因此果農需要精心管理果園,...
肺癌檢測有什麼新技術?

肺癌檢測有什麼新技術?

近年來,隨著科技的不斷進步,檢測和診斷肺癌的方法也有了顯著的改進。以下是一些最新的技術和方法的詳細介紹: 液體活檢(Liquid Biopsy) 機制 液體活檢通過從血液樣本中檢測循環腫瘤DNA(ctDNA)和其他與癌症相關的分子變化,來識別癌症的存在。 統計數據 研究表明,液體活檢的靈敏度和...
蘋果中的卡路里:如何避免體重增加?

蘋果中的卡路里:如何避免體重增加?

蘋果是一種營養豐富的水果,然而,過量食用可能會導致體重增加。這篇文章將深入探討蘋果中的卡路里及其對體重的影響,並提供合理的食用建議。 1. 蘋果的卡路里含量 蘋果的卡路里含量相對較低,一個中等大小的蘋果(約182克)含有大約95卡路里。然而,這些卡路里主要來自於糖分,特別是果糖。雖然果糖的升糖...
蘋果的保存問題:如何避免化學處理的風險?

蘋果的保存問題:如何避免化學處理的風險?

蘋果在保存過程中可能會受到化學物質的處理,如蠟質覆蓋,這些物質可能對健康產生潛在的風險。這篇文章將深入探討蘋果的保存問題及其對健康的影響,並提供安全的保存建議。 1. 蘋果的蠟質處理 為了延長保存期限和保持外觀光亮,許多商業銷售的蘋果會進行蠟質處理。這些蠟質可能是天然蠟,如蜂蠟或蟲膠,也可能是...
蘋果中的糖分:過量食用會胖嗎?

蘋果中的糖分:過量食用會胖嗎?

蘋果被譽為健康水果,富含多種維生素和纖維。然而,蘋果中的天然糖分也讓人關注,過量食用是否會導致體重增加?這篇文章將深入探討蘋果中的糖分及其對體重的影響。 1. 蘋果的糖分來源 蘋果中的糖分主要來自於果糖、葡萄糖和蔗糖。這些天然糖分雖然比添加糖健康,但攝入過量仍然會對健康產生影響。一般來說,一個...
保哥果:益處,營養,副作用,評論和推薦產品

保哥果:益處,營養,副作用,評論和推薦產品

亮點 什麼是保哥果(Pau D'Arco)? 背景和歷史 健康益處 使用方法 藥物互動 副作用和不利之處 產品類型和推薦產品 其他重要或有趣的信息 結論 什麼是保哥果(Pau D'Arco)? 保哥果(Pau D'Arco),學名Tabebuia avellanedae,是一種原產...
艾草:益處,營養,副作用,評論和推薦產品

艾草:益處,營養,副作用,評論和推薦產品

亮點 什麼是艾草(Artemisia)? 背景和歷史 健康益處 使用方法 藥物互動 副作用和不利之處 產品類型和推薦產品 其他重要或有趣的信息 結論 什麼是艾草(Artemisia)? 艾草(Artemisia),又稱艾蒿,是一種常見的草本植物,廣泛分佈於亞洲、歐洲和北美洲。艾草...