三氯乙烯 - 用途和安全等

Overview

  • CAS No. 79-01-6
  • EC No. 201-167-4
  • UN number 1710
  • Chemical formula C2HCl3
Trichloroethylene/TCE is a colorless liquid with an odor similar to chloroform.

use

Trichlorethylene is an effective solvent for many organic materials.

It is mainly used for cleaning. Trichlorethylene is an active ingredient in a variety of printing inks, varnishes and industrial paint formulations. Other uses include

  • Dyeing and finishing operations
  • Adhesive formula
  • Rubber industry
  • adhesive
  • Varnishes and paint strippers

When trichlorethylene was first widely produced in the 1920s, its main use was to extract vegetable oils from plant materials such as soybeans, coconuts and palms. Other uses in the food industry include decaffeinated coffee and the preparation of flavor extracts from hops and spices. TCE is used as a freezing point depressant in carbon tetrachloride fire extinguishers.

anaesthetization

Trichlorethylene is an excellent analgesic in concentrations of 0.35% to 0.5%. Trichlorethylene has been used to treat trigeminal neuralgia since 1916.

From the 1940s to the 1980s, trichlorethylene was almost always used as a volatile anesthetic along with nitrous oxide, both in Europe and North America. Marketed in the UK as Trilene by Imperial Chemical Industries, it is dyed blue to avoid confusion with the similar-smelling chloroform. Trilene is stabilized with 0.01% thymol.

TCE replaced the early anesthetics chloroform and ether in the 1940s because it was less toxic than chloroform and relatively less flammable, but in the 1960s TCE itself was replaced in developed countries with the introduction of halothane, which Making induction and recovery times much faster and much easier to manage. Trilene is also used as an inhaled analgesic, primarily during labor and delivery, usually by the patient. Trichlorethylene was introduced for obstetric anesthesia in 1943 and was used until the 1980s. Its use as an anesthetic was banned in the United States in 1977, but its use in the United Kingdom continued until the late 1980s.

It is used along with Halothane in tri-service field anesthesia devices used by the British Armed Forces in field conditions. However, as of 2000, trichlorethylene was still used as an anesthetic in Africa.

Trichlorethylene has been used in the production of another anesthetic, halothane.

cleaning solvent

It is also used as a dry cleaning solvent, although it has been largely replaced by perchlorethylene, except for spot cleaning, where it is still used under the trade name Picrin.

Perhaps the greatest use of TCE is as a degreaser for metal parts. Since the 1920s, it has been widely used in degreasing and cleaning due to its low cost, low flammability, low toxicity, and high efficiency as a solvent. In the 1950s, demand for TCE as a degreasing agent began to decline and was replaced by the less toxic 1,1,1-trichloroethane. However, as 1,1,1-trichloroethane production has been phased out in much of the world under the terms of the Montreal Protocol, the use of trichlorethylene as a degreasing agent has rebounded.

Trichlorethylene is used to remove oil and lanolin from wool before weaving.

TCE has also been used in the United States to clean kerosene-fueled rocket engines. During static ignition, RP-1 fuel can leave hydrocarbon deposits and vapors in the engine. These deposits must be flushed from the engine to avoid the possibility of explosions during engine operation and future ignition. TCE is used to flush the engine's fuel system before and after each test fire. The flushing procedure involves pumping TCE into the engine's fuel system and allowing the solvent to escape, lasting anywhere from a few seconds to 30-35 minutes, depending on the engine. For some engines, the engine's gas generator and liquid oxygen (LOX) hood are also flushed with TCE before test firing. The F-1 rocket engine had its liquid oxygen dome, gas generator and thrust chamber fuel jacket flushed with TCE during launch preparation.

refrigerant

TCE is also used in the manufacture of a range of fluorocarbon refrigerants, such as 1,1,1,2-tetrafluoroethane. Due to its high heat transfer capacity and cryogenic specifications, TCE is also used in industrial refrigeration applications.

safety and regulations

Trichlorethylene may cause eye and skin irritation. Exposure to high concentrations can cause dizziness, headache, drowsiness, confusion, nausea, unconsciousness, liver damage, and even death. Trichlorethylene is a known carcinogen.
Workers may be harmed by exposure to trichlorethylene. Exposure depends on dose, duration and work performed.

If sufficient amounts of trichlorethylene are leaked into the environment, trichlorethylene will exist as a dense non-aqueous phase liquid (DNAPL).

Two British public chemists reported in 1949 two separate instances of well contamination caused by industrial emissions of trichlorethylene. Based on existing federal and state investigations, 9% to 34% of U.S. drinking water supplies may contain some TCE contamination, although the EPA reports that most supplies meet maximum contamination levels.

Generally speaking, areas with concentrated industry and population have the highest levels of trichlorethylene in the atmosphere. Rural and remote areas tend to have the lowest atmospheric levels.

Average TCE concentrations measured in the air across the United States typically range from 0.01 ppb to 0.3 ppb, but averages as high as 3.4 ppb have been reported.

Trichlorethylene levels in food have been below a few parts per billion; however, levels as high as 140 ppb have been detected in some food samples. TCE levels were found to be higher than background levels in houses undergoing renovations.

Current regulations in the U.S. and EU

In 2023, the U.S. Environmental Protection Agency determined that trichlorethylene poses an unreasonable risk of harm to human health under 52 of 54 conditions of use, including manufacturing, processing, mixing, recycling, vapor degreasing, and as a lubricant and adhesive. , sealants, cleaning process products and sprays. Both inhalation and dermal exposure are hazardous and are closely associated with immunosuppressive effects of acute exposure and autoimmune effects of chronic exposure. Effective June 1, 2023, two US states (Minnesota and New York) have taken action based on the EPA's findings to ban the use of trichlorethylene in all circumstances except research and development. According to the U.S. EPA, in October 2023, it “proposed a ban on the manufacturing, processing, and commercial distribution of TCE for all uses and imposed longer compliance time frames and workplace controls on certain products.” Processing and industry before the ban took effect and commercial use” to protect everyone, including bystanders, from the harmful health effects of trichlorethylene.

Bacteria that degrade TCE

On the in-situ remediation of trichlorethylene in soil and groundwater. Naturally occurring bacteria have been identified with the ability to degrade TCE. Dehalococcus sp. degrades trichlorethylene via reductive dechlorination under anaerobic conditions.

European nitrosifying bacteria can degrade a variety of halogenated compounds, including trichlorethylene. It has been reported that toluene dioxygenase is involved in TCE degradation by Pseudomonas putida.

In some cases, Flavobacterium autotrophica can convert up to 51% of TCE into CO and CO2.

TCE has been used as a recreational drug

Common ways to take trichlorethylene recreationally include inhaling it with a rag and drinking alcohol. Most TCE abusers are young people and workers who use the chemical in their workplaces. The main reasons for abuse are TCE's euphoric and mild hallucinogenic effects.

Where is trichlorethylene found?

Natural and processed foods may contain trichlorethylene due to direct absorption from the environment, contamination of water used in food processing, and contamination from solvents used to clean food processing equipment.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
Transform Your Home with the Philips Smart 1000i Air Purifier: Allergy Relief Meets Smart Living

Transform Your Home with the Philips Smart 1000i Air Purifier: Allergy Relief Meets Smart Living

In today’s fast-paced world, where indoor air quality often goes unnoticed, the Philips Air Purifier Smart 1000i Series offers a breath of fresh ai...
皮質醇管理:如何控制皮質醇?我們能夠自行管理或調節劑量嗎?

皮質醇管理:如何控制皮質醇?我們能夠自行管理或調節劑量嗎?

皮質醇是一種在壓力反應中發揮重要作用的激素,適量的皮質醇可以幫助我們應對壓力和維持健康。然而,過量或長期的高皮質醇水平可能會對身體帶來負面影響。以下我們將探討如何控制和管理皮質醇,包括自然方法、藥物干預、以及測量皮質醇的方式。 1. 自然方法調節皮質醇 壓力管理技術:研究顯示,冥想、深呼吸...
皮質醇是什麼?它如何影響我們的身體與日常生活?

皮質醇是什麼?它如何影響我們的身體與日常生活?

皮質醇(Cortisol)是一種由腎上腺分泌的激素,通常被稱為「壓力荷爾蒙」。它的主要功能是幫助身體應對壓力情境,並且在多種生理過程中扮演重要角色。皮質醇的釋放受腦部下丘腦-垂體-腎上腺軸(HPA軸)控制,這是一個調節人體反應於壓力的系統。 皮質醇對身體的影響 當我們處於壓力下時,皮質...
為什麼我們在緊張時總是忍不住吃零食?科學解密壓力性飲食行為

為什麼我們在緊張時總是忍不住吃零食?科學解密壓力性飲食行為

當人們感到緊張或壓力時,經常會無意識地吃零食,這種行為主要涉及大腦的多巴胺系統、情緒反應以及身體的生理需求。以下是背後的幾個主要原因: 壓力荷爾蒙的影響:壓力會觸發皮質醇的釋放,這種壓力激素會引發人們對高糖和高脂肪食物的渴望。這些食物能帶來短暫的愉悅感,因為它們能刺激大腦分泌多巴胺,讓人感...
光學治療濕疹 - 全面總結

光學治療濕疹 - 全面總結

簡介 光療使用光波來治療某些皮膚問題。皮膚會暴露於紫外線 (UV) 光下一段設定的時間。光療利用人造的紫外線光源,紫外線也來自陽光。當與一種叫做甲氧補骨脂素的藥物一起使用時,這個程序稱為 PUVA 光療。 紫外線光能夠抑制皮膚中的免疫系統細胞,對於因免疫系統過度反應引起的皮膚問題有幫助。可以使...
什麼是「操縱者」?

什麼是「操縱者」?

操縱者,也可以說成「擅用手段的人」,「心機重的人」。操縱者利用欺騙、影響或者其他形式的心理操控來控制或影響他人,以達到自己的目標。他們的行為通常包含使用隱蔽、間接或偷偷摸摸的手法來獲得他們想要的東西,往往是以犧牲他人為代價。以下是一些常見的特徵和手段: 欺騙: 他們可能會說謊或扭曲事實來誤...
什麼是肌肉抽搐?你需要去看醫生嗎?

什麼是肌肉抽搐?你需要去看醫生嗎?

肌肉抽搐,也稱為肌束顫動,是指身體各部分出現不自主的肌肉收縮。以下是肌肉抽搐的原因、症狀及管理方法的詳細介紹: 肌肉抽搐的原因 壓力和焦慮 高水平的壓力和焦慮會導致肌肉緊張和抽搐。身體對壓力的反應會觸發神經系統,導致肌肉不自主地收縮。 疲勞 過度使用或劇烈運動後的肌肉疲勞會導致肌...
蘋果與牙齒健康:保護牙齒的小技巧

Apples and Dental Health: Tips to Protect Your Teeth

Apples are widely loved for their rich nutritional content and refreshing taste. However, apples' acidic and sugary content may also have an impact...
蘋果籽的毒性:它們真的有毒嗎?

Apple Seed Toxicity: Are They Really Poisonous?

Apple seeds contain cyanogenic glycosides, compounds that break down in the body to produce cyanide, which has raised concerns about the toxicity o...