三氯乙烯 - 用途和安全等

Overview

  • CAS No. 79-01-6
  • EC No. 201-167-4
  • UN number 1710
  • Chemical formula C2HCl3
Trichloroethylene/TCE is a colorless liquid with an odor similar to chloroform.

use

Trichlorethylene is an effective solvent for many organic materials.

It is mainly used for cleaning. Trichlorethylene is an active ingredient in a variety of printing inks, varnishes and industrial paint formulations. Other uses include

  • Dyeing and finishing operations
  • Adhesive formula
  • Rubber industry
  • adhesive
  • Varnishes and paint strippers

When trichlorethylene was first widely produced in the 1920s, its main use was to extract vegetable oils from plant materials such as soybeans, coconuts and palms. Other uses in the food industry include decaffeinated coffee and the preparation of flavor extracts from hops and spices. TCE is used as a freezing point depressant in carbon tetrachloride fire extinguishers.

anaesthetization

Trichlorethylene is an excellent analgesic in concentrations of 0.35% to 0.5%. Trichlorethylene has been used to treat trigeminal neuralgia since 1916.

From the 1940s to the 1980s, trichlorethylene was almost always used as a volatile anesthetic along with nitrous oxide, both in Europe and North America. Marketed in the UK as Trilene by Imperial Chemical Industries, it is dyed blue to avoid confusion with the similar-smelling chloroform. Trilene is stabilized with 0.01% thymol.

TCE replaced the early anesthetics chloroform and ether in the 1940s because it was less toxic than chloroform and relatively less flammable, but in the 1960s TCE itself was replaced in developed countries with the introduction of halothane, which Making induction and recovery times much faster and much easier to manage. Trilene is also used as an inhaled analgesic, primarily during labor and delivery, usually by the patient. Trichlorethylene was introduced for obstetric anesthesia in 1943 and was used until the 1980s. Its use as an anesthetic was banned in the United States in 1977, but its use in the United Kingdom continued until the late 1980s.

It is used along with Halothane in tri-service field anesthesia devices used by the British Armed Forces in field conditions. However, as of 2000, trichlorethylene was still used as an anesthetic in Africa.

Trichlorethylene has been used in the production of another anesthetic, halothane.

cleaning solvent

It is also used as a dry cleaning solvent, although it has been largely replaced by perchlorethylene, except for spot cleaning, where it is still used under the trade name Picrin.

Perhaps the greatest use of TCE is as a degreaser for metal parts. Since the 1920s, it has been widely used in degreasing and cleaning due to its low cost, low flammability, low toxicity, and high efficiency as a solvent. In the 1950s, demand for TCE as a degreasing agent began to decline and was replaced by the less toxic 1,1,1-trichloroethane. However, as 1,1,1-trichloroethane production has been phased out in much of the world under the terms of the Montreal Protocol, the use of trichlorethylene as a degreasing agent has rebounded.

Trichlorethylene is used to remove oil and lanolin from wool before weaving.

TCE has also been used in the United States to clean kerosene-fueled rocket engines. During static ignition, RP-1 fuel can leave hydrocarbon deposits and vapors in the engine. These deposits must be flushed from the engine to avoid the possibility of explosions during engine operation and future ignition. TCE is used to flush the engine's fuel system before and after each test fire. The flushing procedure involves pumping TCE into the engine's fuel system and allowing the solvent to escape, lasting anywhere from a few seconds to 30-35 minutes, depending on the engine. For some engines, the engine's gas generator and liquid oxygen (LOX) hood are also flushed with TCE before test firing. The F-1 rocket engine had its liquid oxygen dome, gas generator and thrust chamber fuel jacket flushed with TCE during launch preparation.

refrigerant

TCE is also used in the manufacture of a range of fluorocarbon refrigerants, such as 1,1,1,2-tetrafluoroethane. Due to its high heat transfer capacity and cryogenic specifications, TCE is also used in industrial refrigeration applications.

safety and regulations

Trichlorethylene may cause eye and skin irritation. Exposure to high concentrations can cause dizziness, headache, drowsiness, confusion, nausea, unconsciousness, liver damage, and even death. Trichlorethylene is a known carcinogen.
Workers may be harmed by exposure to trichlorethylene. Exposure depends on dose, duration and work performed.

If sufficient amounts of trichlorethylene are leaked into the environment, trichlorethylene will exist as a dense non-aqueous phase liquid (DNAPL).

Two British public chemists reported in 1949 two separate instances of well contamination caused by industrial emissions of trichlorethylene. Based on existing federal and state investigations, 9% to 34% of U.S. drinking water supplies may contain some TCE contamination, although the EPA reports that most supplies meet maximum contamination levels.

Generally speaking, areas with concentrated industry and population have the highest levels of trichlorethylene in the atmosphere. Rural and remote areas tend to have the lowest atmospheric levels.

Average TCE concentrations measured in the air across the United States typically range from 0.01 ppb to 0.3 ppb, but averages as high as 3.4 ppb have been reported.

Trichlorethylene levels in food have been below a few parts per billion; however, levels as high as 140 ppb have been detected in some food samples. TCE levels were found to be higher than background levels in houses undergoing renovations.

Current regulations in the U.S. and EU

In 2023, the U.S. Environmental Protection Agency determined that trichlorethylene poses an unreasonable risk of harm to human health under 52 of 54 conditions of use, including manufacturing, processing, mixing, recycling, vapor degreasing, and as a lubricant and adhesive. , sealants, cleaning process products and sprays. Both inhalation and dermal exposure are hazardous and are closely associated with immunosuppressive effects of acute exposure and autoimmune effects of chronic exposure. Effective June 1, 2023, two US states (Minnesota and New York) have taken action based on the EPA's findings to ban the use of trichlorethylene in all circumstances except research and development. According to the U.S. EPA, in October 2023, it “proposed a ban on the manufacturing, processing, and commercial distribution of TCE for all uses and imposed longer compliance time frames and workplace controls on certain products.” Processing and industry before the ban took effect and commercial use” to protect everyone, including bystanders, from the harmful health effects of trichlorethylene.

Bacteria that degrade TCE

On the in-situ remediation of trichlorethylene in soil and groundwater. Naturally occurring bacteria have been identified with the ability to degrade TCE. Dehalococcus sp. degrades trichlorethylene via reductive dechlorination under anaerobic conditions.

European nitrosifying bacteria can degrade a variety of halogenated compounds, including trichlorethylene. It has been reported that toluene dioxygenase is involved in TCE degradation by Pseudomonas putida.

In some cases, Flavobacterium autotrophica can convert up to 51% of TCE into CO and CO2.

TCE has been used as a recreational drug

Common ways to take trichlorethylene recreationally include inhaling it with a rag and drinking alcohol. Most TCE abusers are young people and workers who use the chemical in their workplaces. The main reasons for abuse are TCE's euphoric and mild hallucinogenic effects.

Where is trichlorethylene found?

Natural and processed foods may contain trichlorethylene due to direct absorption from the environment, contamination of water used in food processing, and contamination from solvents used to clean food processing equipment.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友叫唔應?可能唔係無禮貌,而係科學:專注時真係聽唔到你

小朋友一睇YouTube、打機、畫畫,突然叫佢,佢完全聽唔到。係咪扮聾?係咪發展遲緩?抑或專注力問題? 研究顯示,大部分情況完全正常,與腦部的「選擇性注意力(Selective Attention)」同「過度專注(Hyperfocus)」有關,不代表有疾病。 什麼是「選擇性注意力」?(Sele...
高血壓|隱形殺手的成因、統計數據與科學研究

高血壓|隱形殺手的成因、統計數據與科學研究

  高血壓|隱形殺手的成因、統計數據與科學研究 快速導讀 高血壓係全球最普遍、但最容易被忽視嘅慢性病之一。 超過一半患者完全無症狀,但長期會破壞血管、增加中風同心臟病風險。 主要成因包括:高鹽、肥胖、缺乏運動、低鉀、飲酒、睡眠窒息症、壓力、吸煙、腎病等。 全球研究顯示:高鹽攝取加上肥胖...
為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

為何肺癌早期大多沒有症狀?科學原理、風險因素與早期發現方法全解析

肺癌一直是全球最常見、死亡率最高的癌症之一。令人憂心的是,大部分肺癌患者在早期(第一、二期)都沒有明顯症狀,往往直到腫瘤擴散、壓迫周邊結構或影響呼吸功能後才被發現。本文以科學角度深入講解:為何肺癌早期「靜悄悄」、身體不察覺?身體內部究竟發生了甚麼? 亦會加入實際的自我檢查策略與醫學建議。 一...
黑眼圈成因全解析:從生理、生活習慣到醫學對策

黑眼圈成因全解析:從生理、生活習慣到醫學對策

前言:為何黑眼圈總是揮之不去? 「黑眼圈」係現代人嘅常見問題之一。無論係通宵工作、壓力過大、過敏,甚至遺傳因素,都可能令眼底皮膚變黑或出現陰影。雖然多數情況屬於美容問題,但有時亦可能反映身體狀況,例如貧血、睡眠質素差、血液循環不良等 [1]。  一、黑眼圈的主要類型與成因 色素型黑眼圈(Pi...
智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

智慧手錶 vs 專用 O₂Ring 血氧儀:血氧監測能力的科學比較

1. 前言 血氧飽和度(SpO₂)是評估呼吸、循環系統狀態的重要指標。近年來,市面上兩大類可穿戴設備用於血氧監測: 智慧手錶(如 Samsung Watch、Apple Watch) 專用血氧監測設備(如 O₂Ring、指夾式脈搏血氧儀) 兩種設備的設計目的、測量方式、準確性、監測...
血氧飽和度、氧氣下降與「警戒線」的科學探討

血氧飽和度、氧氣下降與「警戒線」的科學探討

1. 前言 血氧飽和度(SpO₂)即血液中氧合血紅蛋白佔總血紅蛋白的百分比,是臨床及居家監測呼吸、循環功能的重要指標。當血氧飽和度下降,可能反映體內氧的供應或運送出現問題(低氧血症、hypoxemia)或更廣泛的組織缺氧(hypoxia)[1][2]。本文旨在探討: 血氧飽和度正常範圍與變...
冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Cold Therapy)真正作用全面解析:止痛、減腫,還是幫助修復?|科學視角 + 實證文獻

冰敷(Ice Pack / Cold Therapy / Cryotherapy)係好多運動、急性受傷(如扭傷、撞擊、肌肉拉傷)時的第一時間處理方法。但不少人會疑惑: 「冰敷純粹止痛,定係真係會幫助組織修復?」「冰敷幾耐?冰敷幾多日?會唔會影響身體自然修復?」 本文從科學、醫學、運動治療角度,...
長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

長時間保持同一姿勢後關節痛、僵硬、郁唔到:成因、科學解釋與改善方法

前言:為何「坐耐、蹲耐、跪耐」之後會痛? 無論係坐喺電腦前、跪低執嘢、長時間翹腳、側睡又唔郁——好多人體驗過一樣情況: 「一動就痛、一企起身腳軟、膝蓋直唔到、關節卡卡聲,又或者要行幾步先鬆返。」 其實呢種情況係非常普遍,而且通常並非關節已經壞死,而係 和關節生理、滑液循環、血液供應、肌肉張力 ...
魚醒味的科學:成因、風險與處理方法全面解析

魚醒味的科學:成因、風險與處理方法全面解析

「魚醒味」是華人烹飪文化中常見的說法,用以描述魚類在 解凍、切片或加熱後所突然出現的腥味、血水味或脂肪味。此現象並不代表食材變壞,但背後牽涉到蛋白質變化、脂肪氧化與揮發性化合物釋放等多種科學機制。本文將以科學角度剖析魚醒味的成因,並提供實證方法降低這種味道,同時探討其安全性。 🧪 什麼是「魚...