什麼是丙烯醛?

material physics

CASR number: 107-02-8
Molecular formula: C 3 H 4 O
Alias: Acrylic aldehyde, aqualin, Magnacide

Melting point: -88°C
Boiling point: 52.5°C
Proportion: 0.843
Vapor pressure: 29.3 - 36.5 kPa at 20°C
Flash point: -18℃

history

In 1839, Swedish chemist Jöns Jacob Berzelius first named acrolein and characterized it as an aldehyde. He had been studying it as a thermal degradation product of glycerol, a material used to make soap. The name is an abbreviation of "acrid" (referring to its pungent smell) and "oleum" (referring to its oily consistency). In the 20th century, acrolein became an important intermediate in the industrial production of acrylic acid and acrylic plastics.

make

Acrolein is produced industrially through the oxidation of propylene. This process uses air as the oxygen source and requires metal oxides as heterogeneous catalysts:

CH 3 CH=CH 2 + O 2 → CH 2 =CHCHO + H 2 O

North America, Europe and Japan produce approximately 500,000 tons of acrolein in this way each year. Furthermore, all acrylic acid is produced through the transient formation of acrolein.

Propane is a promising but challenging feedstock for the synthesis of acrolein. The main challenge is actually over-oxidation of this acid.

When glycerin (also known as glycerol) is heated to 280°C, it decomposes into acrolein:

(CH 2 OH) 2 CHOH → CH 2 =CHCHO + 2 H 2 O

This route is attractive when glycerol is co-generated during the production of biodiesel from vegetable oils or animal fats. Glycerol dehydration has been demonstrated but has not yet been proven to be competitive with the petrochemical route.

niche or laboratory approach

The original industrial route to acrolein developed by Degussa involved the condensation of formaldehyde and acetaldehyde:

HCHO + CH 3 CHO → CH 2 =CHCHO + H 2 O

Acrolein can also be produced on a laboratory scale by the action of potassium bisulfate and glycerin.

reaction

Acrolein is a relatively electrophilic and reactive compound and therefore highly toxic. It is a good Michael acceptor and therefore can react usefully with thiols. It readily forms acetals, one of the prominent acetals is a spiro ring derived from pentaerythritol, diallylenepentaerythritol. Acrolein participates in many Diels-Alder reactions and even itself. Via the Diels-Alder reaction, it is a precursor to several commercial fragrances, including lyraldehyde, norbornene-2-carbaldehyde and myrac aldehyde. The monomer 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate is also produced from acrolein via a tetrahydrobenzaldehyde intermediate.

use

military use

Acrolein was used in warfare for its irritating and foaming properties. During World War I, the French used this chemical called Papite in grenades and artillery shells.

Fungicide

Acrolein is primarily used as a contact herbicide to control submerged and floating weeds and algae in irrigation canals. It is used at 10 ppm in irrigation and recycled water. In the oil and gas industry, it is used as a biocide in drilling water and as a scavenger for hydrogen sulfide and mercaptans.

Chemical precursors

Taking advantage of acrolein's dual functionality, many useful compounds are made from acrolein. The amino acid methionine is produced by adding methylmercaptan followed by Strecker synthesis. Acrolein condenses with acetaldehyde and amines to form methylpyridine. It is also an intermediate in Skraup's synthesis of quinoline.

Acrolein polymerizes in the presence of oxygen and in water with concentrations above 22%. The color and texture of the polymer depend on conditions. The polymer is a clear yellow solid. In water, it forms a hard, porous plastic.

Acrolein has been used as a fixative in the preparation of biological specimens for electron microscopy.

health risks

Acrolein is toxic and highly irritating to skin, eyes and nasal passages. The main metabolic pathway of acrolein is alkylation of glutathione. The World Health Organization recommends a "tolerable oral intake of acrolein" of 7.5 micrograms per kilogram of body weight per day. Although French fries (and other fried foods) contain acrolein, the amount is only a few micrograms per kilogram. For occupational exposure to acrolein, the U.S. Occupational Safety and Health Administration has set a permissible exposure limit of 0.1 ppm (0.25 mg/m 3 ) for an eight-hour time-weighted average. Acrolein acts in an immunosuppressive manner and may promote the growth of regulatory cells, thereby preventing the development of allergies but also increasing the risk of cancer.

Acrolein is extremely or highly toxic to a variety of freshwater fish, aquatic invertebrates, algae, and aquatic plants. It is used as a herbicide in aquatic systems such as irrigation channels due to its toxicity to aquatic plants and algae and its relatively rapid dissipation from water. There is no evidence that it accumulates in living tissue, although studies in animals at high, long-term, repeated doses have shown that acrolein can cause systemic effects on many systems, including the respiratory, reproductive, nervous, and hematological systems.

Acrolein can enter the environment through burning trees, cigarettes or fuel. It may be found in air, water or land. Acrolein can also enter the environment from industrial spills or hazardous waste sites. Water treated with acrolein for weed control is retained for a sufficient time to allow the acrolein to dissipate before being released into the environment.

cigarette smoke

There is a link between acrolein gas in cigarette smoke and lung cancer risk. Acrolein is one of the seven toxic substances in cigarette smoke most associated with respiratory carcinogenesis. The mechanism of action of acrolein appears to involve induction of increased reactive oxygen species and DNA damage associated with oxidative stress.

In terms of the "non-carcinogenic health quotient" of components in cigarette smoke, acrolein dominates, and its contribution is 40 times higher than the next component, hydrogen cyanide. The amount of acrolein in cigarette smoke depends on the type of cigarette and the added glycerin, and can range up to 220 micrograms per cigarette. Importantly, although the concentration of components in mainstream smoke can be reduced through filters, this has no significant effect on the components of sidestream smoke where acrolein normally resides and is inhaled through passive smoking. Normally used e-cigarettes produce only "negligible" levels of acrolein.

chemotherapy metabolites

Treatment with cyclophosphamide and ifosfamide results in the production of acrolein. Acrolein produced during cyclophosphamide treatment can accumulate in the bladder and, if left untreated, may lead to hemorrhagic cystitis.

endogenous production

Acrolein is a component of Reuteria sp. Intestinal microbes can produce reuterin when glycerol is present. Microbially produced reuterin is a potential source of acrolein.

Acrolein and food

Optimizing food thermal processing to reduce acrolein production

Thermal processing of food is an important source of acrolein in the atmosphere. Acrolein is produced through various pathways during thermal processing of food and is widely distributed in fried foods, baked foods, overheated vegetable oils, alcoholic beverages, and foods rich in lipids and carbohydrates. Epidemiological research results show that the high incidence of lung cancer in Chinese women is related to acrolein produced by the raw materials of wok at high temperatures. Therefore, people are exposed to acrolein through diet, and the combination of artificial and optimized diet may be an important way to effectively control the intake of acrolein in human food, which is of great significance to maintaining human health. Research shows that excessive temperature is an important factor in the formation of acrolein in hot grease. The researchers observed that acrolein levels in fats and oils increased with time and temperature. Therefore, optimizing the heat treatment process of foods in the diet, such as reducing the production of acrolein by lowering the temperature during cooking, can alleviate health problems caused by acrolein ingestion in humans. Of course, while reducing the generation of acrolein during food thermal processing, attention should also be paid to maintaining and improving the flavor and color of food.

Explore more natural products as food additives to control acrolein levels

Many studies have found that some natural product extracts, such as amino acids, polyphenols, etc., can also control the formation of acrolein to a certain extent as food additives. Amino acids abundant in food can react with acrolein under mild conditions to form adducts, thereby reducing the production of acrolein in thermally processed foods. Free amino acids in food, such as alanine and serine, not only effectively remove acrolein under physiological conditions, but also can quickly and effectively remove acrolein at high temperatures such as 160°C. In addition, L-alanine has been included in the Chinese national standard (GB 2760-2014) and is used as a flavor enhancer in China. In recent years, the good antioxidant activity of polyphenols has made them widely used in the production of various baked goods, with the purpose of reducing the content of food-borne toxins and enhancing their functional properties. Studies have found that myricetin can scavenge acrolein produced during cookie making, suggesting that adding flavonoids to baked goods may inhibit the production of acrolein during food processing. The catechins in matcha powder can significantly inhibit the accumulation of reactive carbonyl species (RCS) during the baking process, and its thermal stability demonstrates the ability of matcha as a food additive. Therefore, adding matcha powder to cake dough can not only increase the flavor of the cake, but also reduce the content of RCS compounds such as acrolein.

In addition, amino acids and polyphenols need to pay attention to the following issues as food additives:

  • The bioavailability of amino acids and polyphenols in the human body and the risk of their accumulation;
  • The influence of the thermal degradation characteristics of polyphenols on their acrolein removal effect;
  • The safety of adducts formed by the reaction of amino acids, polyphenols and acrolein and their exposure in different foods;
  • Interactions of amino acids and polyphenols with other food components;
  • Absorption and metabolism of adducts in the human body, etc.

Therefore, it is necessary to fully evaluate the consequences of adding amino acids and polyphenols to foods.

In summary, in the future food industry, it is an important development to discover more natural products that can be used to control food-borne poisons or are rich in antioxidant activity as additives that can not only increase the flavor of food but also serve as additives. direction. It can also improve the functional properties of food, control the content of food-borne toxic substances, and produce food that is more in line with human health.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
無人機醫療配送:低空經濟下的香港新契機

無人機醫療配送:低空經濟下的香港新契機

  無人機醫療配送:低空經濟下的香港新契機 —— 從健康、醫療金融到商業模式的全球比較與啟示 在香港「低空經濟」監管沙盒下,無人機由數碼港跨海至長洲醫院,約 12 公里航線僅需 18–20 分鐘,相比傳統 45–65 分鐘大幅提速。本文聚焦醫療價值、醫療金融回報與商...
醫管局普通科門診改名「家庭醫學門診」——香港基層醫療新里程?

醫管局普通科門診改名「家庭醫學門診」——香港基層醫療新里程?

  基層醫療 家庭醫學 健康政策 醫管局普通科門診改名「家庭醫學門診」:利與弊、國際比較與香港基層醫療的下一步 醫務衞生局宣佈由 2025 年 10 月 11 日起,將「普通科門診」與「家庭醫學專科門診」統一命名為「家庭醫學門診服務」,74 間普通科門診...
基孔肯雅熱:被伊蚊叮咬後的劇痛病毒 — 病毒、傳播、症狀與防治全解析

基孔肯雅熱:被伊蚊叮咬後的劇痛病毒 — 病毒、傳播、症狀與防治全解析

什麼是基孔肯雅熱? 基孔肯雅熱(Chikungunya Fever)是一種由**基孔肯雅病毒(Chikungunya virus, CHIKV)**引起的急性傳染病,屬於 Togaviridae 家族 Alphavirus 屬。這種病毒最早於 1952 年在坦桑尼亞被發現,其名稱來自當地馬孔德...
登革熱:全球爆發中的熱帶威脅與防護全解析

登革熱:全球爆發中的熱帶威脅與防護全解析

登革熱係乜嘢? 登革熱(Dengue fever)係一種由登革熱病毒(Dengue virus)引起嘅急性傳染病,主要經由伊蚊(Aedes mosquito)叮咬傳播,特別係白紋伊蚊(Aedes albopictus)同埃及伊蚊(Aedes aegypti)。呢啲蚊喺日間最活躍,因此唔似瘧疾嗰...
流感點樣會引致腦病變、心肌炎同休克?——從「感冒」變成致命風暴

流感點樣會引致腦病變、心肌炎同休克?——從「感冒」變成致命風暴

近排有新聞報導,一名原本健康嘅中學生感染乙型流感(Influenza B)之後,出現腦病變、心肌炎同休克,情況危殆。好多家長都會問:「流感唔就係普通感冒?點解可以嚴重到影響腦同心臟?」其實,流感背後嘅機制比我哋想像中複雜得多。 一、流感病毒唔止攻擊呼吸道 流感病毒(包括甲型同乙型)主要透過飛...
牛骨湯食譜大全|Instant Pot 壓力煲 & 傳統老火湯版本

牛骨湯食譜大全|Instant Pot 壓力煲 & 傳統老火湯版本

牛骨湯食譜係香港家庭常見嘅煲湯之一,牛骨湯香濃滋補,配合中藥材更具養生功效。本文介紹肉骨類選擇、牛骨湯建議配搭、常見中藥材分類,以及Instant Pot壓力煲與傳統老火湯版本食譜,並引用科學研究支持。
澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南)

澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南)

澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南) 澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南) 重點:事件本身不代表飲水會感染;主要風險來自水經鼻腔進入。 目錄 ...
如何判斷雞翅是否變壞?

如何判斷雞翅是否變壞?

重點摘要 雞翅會變質嗎? 如何判斷雞翅是否變壞? 過期雞翅還能食嗎? 雞翅可存放多久? 如何儲存雞翅? 雞翅可以冷凍嗎? 結論 雞翅會變質嗎? 會。皮脂較多、表面不潔或溫度過高時,細菌繁殖更快。 如何判斷雞翅是否變壞? 外觀:皮色發黃、出黑斑或血水。 觸感:表面黏滑、軟爛。 氣...
如何判斷雞蛋是否變壞?

如何判斷雞蛋是否變壞?

重點摘要 雞蛋會變質嗎? 如何判斷雞蛋是否變壞? 過期雞蛋還能食嗎? 雞蛋可存放多久? 如何儲存雞蛋? 雞蛋可以冷凍嗎? 結論 雞蛋會變質嗎? 會。殼面有微孔,溫差及濕度變化會令細菌入侵。 如何判斷雞蛋是否變壞? 水測:沉底=較新鮮;浮起=多半變壞。 打開觀察:蛋白渾濁水樣、蛋黃...