什麼是丙烯醛?

material physics

CASR number: 107-02-8
Molecular formula: C 3 H 4 O
Alias: Acrylic aldehyde, aqualin, Magnacide

Melting point: -88°C
Boiling point: 52.5°C
Proportion: 0.843
Vapor pressure: 29.3 - 36.5 kPa at 20°C
Flash point: -18℃

history

In 1839, Swedish chemist Jöns Jacob Berzelius first named acrolein and characterized it as an aldehyde. He had been studying it as a thermal degradation product of glycerol, a material used to make soap. The name is an abbreviation of "acrid" (referring to its pungent smell) and "oleum" (referring to its oily consistency). In the 20th century, acrolein became an important intermediate in the industrial production of acrylic acid and acrylic plastics.

make

Acrolein is produced industrially through the oxidation of propylene. This process uses air as the oxygen source and requires metal oxides as heterogeneous catalysts:

CH 3 CH=CH 2 + O 2 → CH 2 =CHCHO + H 2 O

North America, Europe and Japan produce approximately 500,000 tons of acrolein in this way each year. Furthermore, all acrylic acid is produced through the transient formation of acrolein.

Propane is a promising but challenging feedstock for the synthesis of acrolein. The main challenge is actually over-oxidation of this acid.

When glycerin (also known as glycerol) is heated to 280°C, it decomposes into acrolein:

(CH 2 OH) 2 CHOH → CH 2 =CHCHO + 2 H 2 O

This route is attractive when glycerol is co-generated during the production of biodiesel from vegetable oils or animal fats. Glycerol dehydration has been demonstrated but has not yet been proven to be competitive with the petrochemical route.

niche or laboratory approach

The original industrial route to acrolein developed by Degussa involved the condensation of formaldehyde and acetaldehyde:

HCHO + CH 3 CHO → CH 2 =CHCHO + H 2 O

Acrolein can also be produced on a laboratory scale by the action of potassium bisulfate and glycerin.

reaction

Acrolein is a relatively electrophilic and reactive compound and therefore highly toxic. It is a good Michael acceptor and therefore can react usefully with thiols. It readily forms acetals, one of the prominent acetals is a spiro ring derived from pentaerythritol, diallylenepentaerythritol. Acrolein participates in many Diels-Alder reactions and even itself. Via the Diels-Alder reaction, it is a precursor to several commercial fragrances, including lyraldehyde, norbornene-2-carbaldehyde and myrac aldehyde. The monomer 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate is also produced from acrolein via a tetrahydrobenzaldehyde intermediate.

use

military use

Acrolein was used in warfare for its irritating and foaming properties. During World War I, the French used this chemical called Papite in grenades and artillery shells.

Fungicide

Acrolein is primarily used as a contact herbicide to control submerged and floating weeds and algae in irrigation canals. It is used at 10 ppm in irrigation and recycled water. In the oil and gas industry, it is used as a biocide in drilling water and as a scavenger for hydrogen sulfide and mercaptans.

Chemical precursors

Taking advantage of acrolein's dual functionality, many useful compounds are made from acrolein. The amino acid methionine is produced by adding methylmercaptan followed by Strecker synthesis. Acrolein condenses with acetaldehyde and amines to form methylpyridine. It is also an intermediate in Skraup's synthesis of quinoline.

Acrolein polymerizes in the presence of oxygen and in water with concentrations above 22%. The color and texture of the polymer depend on conditions. The polymer is a clear yellow solid. In water, it forms a hard, porous plastic.

Acrolein has been used as a fixative in the preparation of biological specimens for electron microscopy.

health risks

Acrolein is toxic and highly irritating to skin, eyes and nasal passages. The main metabolic pathway of acrolein is alkylation of glutathione. The World Health Organization recommends a "tolerable oral intake of acrolein" of 7.5 micrograms per kilogram of body weight per day. Although French fries (and other fried foods) contain acrolein, the amount is only a few micrograms per kilogram. For occupational exposure to acrolein, the U.S. Occupational Safety and Health Administration has set a permissible exposure limit of 0.1 ppm (0.25 mg/m 3 ) for an eight-hour time-weighted average. Acrolein acts in an immunosuppressive manner and may promote the growth of regulatory cells, thereby preventing the development of allergies but also increasing the risk of cancer.

Acrolein is extremely or highly toxic to a variety of freshwater fish, aquatic invertebrates, algae, and aquatic plants. It is used as a herbicide in aquatic systems such as irrigation channels due to its toxicity to aquatic plants and algae and its relatively rapid dissipation from water. There is no evidence that it accumulates in living tissue, although studies in animals at high, long-term, repeated doses have shown that acrolein can cause systemic effects on many systems, including the respiratory, reproductive, nervous, and hematological systems.

Acrolein can enter the environment through burning trees, cigarettes or fuel. It may be found in air, water or land. Acrolein can also enter the environment from industrial spills or hazardous waste sites. Water treated with acrolein for weed control is retained for a sufficient time to allow the acrolein to dissipate before being released into the environment.

cigarette smoke

There is a link between acrolein gas in cigarette smoke and lung cancer risk. Acrolein is one of the seven toxic substances in cigarette smoke most associated with respiratory carcinogenesis. The mechanism of action of acrolein appears to involve induction of increased reactive oxygen species and DNA damage associated with oxidative stress.

In terms of the "non-carcinogenic health quotient" of components in cigarette smoke, acrolein dominates, and its contribution is 40 times higher than the next component, hydrogen cyanide. The amount of acrolein in cigarette smoke depends on the type of cigarette and the added glycerin, and can range up to 220 micrograms per cigarette. Importantly, although the concentration of components in mainstream smoke can be reduced through filters, this has no significant effect on the components of sidestream smoke where acrolein normally resides and is inhaled through passive smoking. Normally used e-cigarettes produce only "negligible" levels of acrolein.

chemotherapy metabolites

Treatment with cyclophosphamide and ifosfamide results in the production of acrolein. Acrolein produced during cyclophosphamide treatment can accumulate in the bladder and, if left untreated, may lead to hemorrhagic cystitis.

endogenous production

Acrolein is a component of Reuteria sp. Intestinal microbes can produce reuterin when glycerol is present. Microbially produced reuterin is a potential source of acrolein.

Acrolein and food

Optimizing food thermal processing to reduce acrolein production

Thermal processing of food is an important source of acrolein in the atmosphere. Acrolein is produced through various pathways during thermal processing of food and is widely distributed in fried foods, baked foods, overheated vegetable oils, alcoholic beverages, and foods rich in lipids and carbohydrates. Epidemiological research results show that the high incidence of lung cancer in Chinese women is related to acrolein produced by the raw materials of wok at high temperatures. Therefore, people are exposed to acrolein through diet, and the combination of artificial and optimized diet may be an important way to effectively control the intake of acrolein in human food, which is of great significance to maintaining human health. Research shows that excessive temperature is an important factor in the formation of acrolein in hot grease. The researchers observed that acrolein levels in fats and oils increased with time and temperature. Therefore, optimizing the heat treatment process of foods in the diet, such as reducing the production of acrolein by lowering the temperature during cooking, can alleviate health problems caused by acrolein ingestion in humans. Of course, while reducing the generation of acrolein during food thermal processing, attention should also be paid to maintaining and improving the flavor and color of food.

Explore more natural products as food additives to control acrolein levels

Many studies have found that some natural product extracts, such as amino acids, polyphenols, etc., can also control the formation of acrolein to a certain extent as food additives. Amino acids abundant in food can react with acrolein under mild conditions to form adducts, thereby reducing the production of acrolein in thermally processed foods. Free amino acids in food, such as alanine and serine, not only effectively remove acrolein under physiological conditions, but also can quickly and effectively remove acrolein at high temperatures such as 160°C. In addition, L-alanine has been included in the Chinese national standard (GB 2760-2014) and is used as a flavor enhancer in China. In recent years, the good antioxidant activity of polyphenols has made them widely used in the production of various baked goods, with the purpose of reducing the content of food-borne toxins and enhancing their functional properties. Studies have found that myricetin can scavenge acrolein produced during cookie making, suggesting that adding flavonoids to baked goods may inhibit the production of acrolein during food processing. The catechins in matcha powder can significantly inhibit the accumulation of reactive carbonyl species (RCS) during the baking process, and its thermal stability demonstrates the ability of matcha as a food additive. Therefore, adding matcha powder to cake dough can not only increase the flavor of the cake, but also reduce the content of RCS compounds such as acrolein.

In addition, amino acids and polyphenols need to pay attention to the following issues as food additives:

  • The bioavailability of amino acids and polyphenols in the human body and the risk of their accumulation;
  • The influence of the thermal degradation characteristics of polyphenols on their acrolein removal effect;
  • The safety of adducts formed by the reaction of amino acids, polyphenols and acrolein and their exposure in different foods;
  • Interactions of amino acids and polyphenols with other food components;
  • Absorption and metabolism of adducts in the human body, etc.

Therefore, it is necessary to fully evaluate the consequences of adding amino acids and polyphenols to foods.

In summary, in the future food industry, it is an important development to discover more natural products that can be used to control food-borne poisons or are rich in antioxidant activity as additives that can not only increase the flavor of food but also serve as additives. direction. It can also improve the functional properties of food, control the content of food-borne toxic substances, and produce food that is more in line with human health.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
成年後懷疑自己有注意力不足過動症(ADHD),應該接受診斷嗎?

成年後懷疑自己有注意力不足過動症(ADHD),應該接受診斷嗎?

在過去,注意力不足過動症(Attention-Deficit/Hyperactivity Disorder, ADHD)多被視為「小孩的病」,很多成年人小時候從未被評估或診斷。直到近年社會對心理健康重視度提升,許多成人才開始懷疑,自己長期以來的專注困難、健忘、衝動或時間管理不良,可能與 ADHD 有關。這種「晚發現」的情況相當普遍,也引發了問題:成年後是否值得接受 ADHD 診斷?

哪些職業對健康影響最大?科學與現實的分析

哪些職業對健康影響最大?科學與現實的分析

在現代社會中,工作佔據了人們生命中相當大的一部分。然而,不同職業對健康的風險並不相同。一些工作性質或環境,會顯著增加慢性病、心理壓力、甚至縮短壽命的風險。以下從科學研究與醫學角度,探討幾類對健康損害較大的職業,並附上相關統計數據。

電擊槍的機制與對人體健康影響

電擊槍的機制與對人體健康影響

在現代執法中,警察常使用所謂「非致命性武器」(less-lethal weapons),其中最廣為人知的便是 電擊槍(Taser)。電擊槍的設計初衷是提供一種介於徒手制服與槍械之間的選擇,藉由暫時性電擊使嫌疑人失去行動能力,以降低致命暴力發生的風險。然而,電擊槍並非完全無害,背後涉及的電流機制與人體生理反應值得深入探討。

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

腫瘤治療的新挑戰 近十年來,免疫檢查點抑制劑(Immune Checkpoint Inhibitors, ICIs)改變咗癌症治療格局。當中 PD-1/PD-L1 抑制劑 已經成為多種腫瘤的一線或二線療法,而 VEGF 抑制劑 亦係抗血管生成治療嘅核心藥物。然而,臨床數據顯示,雖然 PD-(L...
疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛一直是全球道路安全的重要議題。許多人將疲勞視為「只是累了」,但科學研究表明,當人處於極度疲倦時,大腦功能下降的程度可與酒精中毒相當。不僅如此,長時間駕駛還會對身體健康造成慢性負擔。隨著科技發展,越來越多可穿戴裝置被設計用來協助監測疲勞狀態,其中,日本 Medirom 公司開發的 REMONY 裝置近日獲得國土交通省(MLIT)認證,成為市場矚目的焦點。本文將先探討疲勞駕駛的健康風險,然後客觀分析 REMONY 裝置的技術特點與潛力。

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟皮膚為何容易出現問題? 腳跟係身體承受最大壓力嘅部位之一。每日行走、站立,腳跟長期摩擦同受壓,如果缺乏適當護理,就會導致角質層過度增厚、乾燥同龜裂。當角質層愈厚,皮膚顏色會慢慢變得偏黃,甚至暗啡。 造成腳跟黃、裂、脫皮的常見原因 角質層增厚長期行走或穿硬底鞋,令腳跟角質層積聚過多,顏色...
Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 幾乎已經變成日常生活不可或缺嘅一部分。無論係屋企、公司、學校,甚至咖啡店同巴士,都有無線網絡覆蓋。但好多讀者都會擔心:「成日浸喺 Wi-Fi 入面,會唔會慢慢影響身體健康?會唔會致癌?會唔會令我失眠或者精神差?」 今篇文章會由淺入深,帶大家了解 Wi-Fi 嘅電磁波特性、科學研究結...
長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

好多人每日要長時間坐喺辦公室、電腦前面,或者瞓覺時維持同一個姿勢。結果往往出現腰酸背痛、手腳麻痺,甚至覺得關節「鎖住」郁唔到。久坐傷身腳麻痺點解長時間坐姿影響健康,都係大家經常搜尋嘅問題。今次我哋就一齊睇下背後原因。

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症最令人畏懼的地方,不單在於原發腫瘤本身,而是它能夠 轉移(Metastasis) —— 由原本的器官擴散至身體其他部位。事實上,大多數癌症致命的原因,並非來自腫瘤的「原居地」,而是因為它在其他重要器官(如腦、肝、骨、肺)形成了新的腫瘤。