什麼是Nirmatrelvir?

Nirmatrelvir is an antiviral drug developed by Pfizer as an orally active 3C-like protease inhibitor. It is part of the nirmatrelvir/ritonavir combination and is marketed under the brand name Paxlovid.

pharmaceutical

Coronavirus proteases cleave at multiple sites in the viral polyprotein, usually after glutamine residues. Early studies on related human rhinoviruses showed that flexible glutamine side chains can be replaced by rigid pyrrolidone. These drugs were further developed for other diseases, including SARS, before the COVID-19 pandemic. In 2018, GC376 (a prodrug GC373) was used to treat a previously 100% fatal feline coronavirus disease, feline infectious peritonitis, caused by feline coronavirus. Nirmatrelvir and GC373 are both peptide mimetics that share the above-mentioned pyrrolidone at the P1 position and are competitive inhibitors; however, they use nitriles and aldehydes, respectively, to bind the catalytic cysteine. Pfizer studied two series of compounds with nitriles and benzothiazol-2-yl ketones as reactive groups, ultimately settling on nitriles.

Nirmatrelvir was developed by modifying the early clinical candidate lufotrelvir, which is also a covalent protease inhibitor, but its warhead is a phosphate prodrug of a hydroxyketone. Lufotrelvir requires intravenous administration, limiting its use to hospital settings. Stepwise modification of tripeptide protein mimetics resulted in nimatravir suitable for oral administration. Key changes include reducing the number of hydrogen bond donors and reducing the number of rotatable bonds by introducing a rigid bicyclic ring Unconventional amino acids (specifically a "fused cyclopropyl ring with two methyl groups"), which mimic the leucine residue found in earlier inhibitors. This residue was previously used in the synthesis of boceprevir. Using combinatorial chemistry (hybrid combinatorial substrate library technology), the tertiary leucine (abbreviation: Tle) used at the P3 position of nimaprevir was identified for the first time as the best non-classical amino acid in potential drugs targeting SARS-CoV-2 3C-like protease. ).

However, leucine-like residues cause nearby loss of contact with glycine. To compensate, Pfizer tried adding methanesulfonamide, acetamide, and trifluoroacetamide, and found that trifluoroacetamide had excellent oral bioavailability.

Chemistry and Pharmacology

Full details of the synthesis of nirmatrelvir have been published for the first time by Pfizer scientists.

In the penultimate step, the synthesized homochiral amino acid is coupled to the homochiral aminoamide using the water-soluble carbodiimide EDCI as the coupling agent. The resulting intermediate is then treated with Burgess' reagent to dehydrate the amide group to the product nitrile.

Nirmatrelvir is a covalent inhibitor that binds directly to the catalytic cysteine ​​(Cys145) residue of caspases.

In the co-packaged drug nirmatrelvir/ritonavir, ritonavir slows the metabolism of nirmatrelvir through cytochrome enzyme inhibition, thereby increasing circulating concentrations of the primary drug. This effect is also used in HIV therapy, where ritonavir is combined with another protease inhibitor to similarly enhance its pharmacokinetics.

license

In November 2021, Pfizer signed a licensing agreement with the United Nations-backed Drug Patent Pool, allowing nirmatrelvir to be produced and sold in 95 countries. Pfizer said the agreement would allow local drug manufacturers to produce the pills "with the goal of promoting greater access to the global population". However, the agreement excludes several countries with major COVID-19 outbreaks, including Brazil, China, Russia, Argentina and Thailand.

Research

The research leading to nirmatrelvir began on March 16, 2020, when Pfizer officially launched a project at its Cambridge, Massachusetts, facility to develop an antiviral drug to treat COVID-19. [ On July 22, 2020, Pfizer chemists were able to synthesize nirmatrelvir for the first time, although the significance of that moment was unclear at the time, as it was just one of 20 drug candidates synthesized that week. On September 1, 2020, Pfizer completed a pharmacokinetic study in rats demonstrating that nimaprevir can be administered orally. The actual synthesis of drugs used in laboratory studies and clinical trials occurs at Pfizer's facility in Groton, Connecticut.

In February 2021, Pfizer initiated the company's first Phase I trial of PF-07321332 (nirmatrelvir) at its clinical research unit in New Haven, Connecticut. According to Chemistry & Engineering News , the drug “went from an idea to the first human clinical trial in 12 months—an incredible speed to deliver a custom drug candidate.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南)

澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南)

澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南) 澳洲飲用水發現「食腦變形蟲」:全球風險與地區對策(含各國/各州實用指南) 重點:事件本身不代表飲水會感染;主要風險來自水經鼻腔進入。 目錄 ...
如何判斷雞翅是否變壞?

如何判斷雞翅是否變壞?

重點摘要 雞翅會變質嗎? 如何判斷雞翅是否變壞? 過期雞翅還能食嗎? 雞翅可存放多久? 如何儲存雞翅? 雞翅可以冷凍嗎? 結論 雞翅會變質嗎? 會。皮脂較多、表面不潔或溫度過高時,細菌繁殖更快。 如何判斷雞翅是否變壞? 外觀:皮色發黃、出黑斑或血水。 觸感:表面黏滑、軟爛。 氣...
如何判斷雞蛋是否變壞?

如何判斷雞蛋是否變壞?

重點摘要 雞蛋會變質嗎? 如何判斷雞蛋是否變壞? 過期雞蛋還能食嗎? 雞蛋可存放多久? 如何儲存雞蛋? 雞蛋可以冷凍嗎? 結論 雞蛋會變質嗎? 會。殼面有微孔,溫差及濕度變化會令細菌入侵。 如何判斷雞蛋是否變壞? 水測:沉底=較新鮮;浮起=多半變壞。 打開觀察:蛋白渾濁水樣、蛋黃...
如何判斷羊肉是否變壞?

如何判斷羊肉是否變壞?

重點摘要 羊肉會變質嗎? 如何判斷羊肉是否變壞? 過期羊肉還能食嗎? 羊肉可存放多久? 如何儲存羊肉? 羊肉可以冷凍嗎? 結論 羊肉會變質嗎? 會。脂肪多而易氧化,處理或存放唔好就會變壞。 如何判斷羊肉是否變壞? 顏色:紅轉黑,或出現綠斑。 脂肪:由白轉黃兼有酸味。 氣味:由輕...
如何判斷豬肉是否變壞?

如何判斷豬肉是否變壞?

重點摘要 豬肉會變質嗎? 如何判斷豬肉是否變壞? 過期豬肉還能食嗎? 豬肉可存放多久? 如何儲存豬肉? 豬肉可以冷凍嗎? 結論 豬肉會變質嗎? 會。豬肉表面水活度高,加上處理不潔或溫度過高,容易腐敗。 如何判斷豬肉是否變壞? 顏色:粉紅轉灰、發綠或出斑。 氣味:酸臭、腥臭味濃 ...
如何判斷牛肉是否變壞?

如何判斷牛肉是否變壞?

重點摘要 牛肉會變質嗎? 如何判斷牛肉是否變壞? 過期牛肉還能食嗎? 牛肉可存放多久? 如何儲存牛肉? 牛肉可以冷凍嗎? 結論 牛肉會變質嗎? 會。牛肉含高蛋白同水分,若溫度控制或衛生不當,細菌會快速繁殖,導致變壞。 如何判斷牛肉是否變壞? 顏色:鮮紅轉深褐甚至發黑;脂肪變黃。 ...
成年後懷疑自己有注意力不足過動症(ADHD),應該接受診斷嗎?

成年後懷疑自己有注意力不足過動症(ADHD),應該接受診斷嗎?

在過去,注意力不足過動症(Attention-Deficit/Hyperactivity Disorder, ADHD)多被視為「小孩的病」,很多成年人小時候從未被評估或診斷。直到近年社會對心理健康重視度提升,許多成人才開始懷疑,自己長期以來的專注困難、健忘、衝動或時間管理不良,可能與 ADHD 有關。這種「晚發現」的情況相當普遍,也引發了問題:成年後是否值得接受 ADHD 診斷?

哪些職業對健康影響最大?科學與現實的分析

哪些職業對健康影響最大?科學與現實的分析

在現代社會中,工作佔據了人們生命中相當大的一部分。然而,不同職業對健康的風險並不相同。一些工作性質或環境,會顯著增加慢性病、心理壓力、甚至縮短壽命的風險。以下從科學研究與醫學角度,探討幾類對健康損害較大的職業,並附上相關統計數據。

電擊槍的機制與對人體健康影響

電擊槍的機制與對人體健康影響

在現代執法中,警察常使用所謂「非致命性武器」(less-lethal weapons),其中最廣為人知的便是 電擊槍(Taser)。電擊槍的設計初衷是提供一種介於徒手制服與槍械之間的選擇,藉由暫時性電擊使嫌疑人失去行動能力,以降低致命暴力發生的風險。然而,電擊槍並非完全無害,背後涉及的電流機制與人體生理反應值得深入探討。