褪黑素

background

Melatonin is a biogenic amine found in animals, plants and microorganisms. In mammals, melatonin is produced by the pineal gland. The pineal gland is a small endocrine gland, about the size of a grain of rice and shaped like a pine cone, located in the center of the brain but outside the blood: the blood-brain barrier. Melatonin secretion increases in darkness and decreases in light, thereby regulating circadian rhythms in multiple biological functions including sleep-wake cycles. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering body temperature. Melatonin is also associated with the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also a potent antioxidant.

Most of the effects of melatonin are mediated through the binding and activation of melatonin receptors. People with autism spectrum disorder (ASD) may have lower than normal levels of melatonin. A 2008 study found that the unaffected parents of people with ASD also had lower melatonin levels, and that the defect was associated with low activity in the ASMT gene, which codes for the last enzyme in melatonin synthesis. Reductions in melatonin have also been implicated as a possible factor in the significant increase in cancer rates among night shift workers.

chemical formula

C 13 H 16 N 2 O 2

pharmacology

Orally used to treat jet lag, insomnia, shift work disorder, circadian rhythm disorders in blind people (evidence of efficacy), and benzodiazepine and nicotine withdrawal.

There is evidence that melatonin may be effective in treating circadian rhythm sleep disorders in blind children and adults. It has received FDA orphan drug status as an oral drug for this purpose. Many studies suggest that melatonin may be effective in treating sleep-wake cycle disorders in children and adolescents with mental retardation, autism, and other central nervous system disorders. It appears to reduce the time it takes for children with developmental disabilities, such as cerebral palsy, autism and mental retardation, to fall asleep. It can also improve secondary insomnia associated with various sleep-wake cycle disorders.

pharmacodynamics

Melatonin is a hormone normally produced in the pineal gland and released into the bloodstream. The essential amino acid L-tryptophan ( L-tryptophan) is the precursor for the synthesis of melatonin. It helps regulate the sleep-wake cycle, or circadian rhythm. Melatonin production is stimulated by darkness and inhibited by light. High levels of melatonin cause sleep, so taking this medication can combat insomnia and jet lag. MT1 and MT2 receptors may be targets for the treatment of circadian and noncircadian sleep disorders because of their pharmacological and functional differences within the SCN. The SCN is responsible for maintaining a 24-hour cycle that regulates many different body functions from sleep to immune function

Mechanism

Melanin is a derivative of tryptophan . It binds to the type 1A melatonin receptor, which then acts on adenylyl cyclase and inhibits the cAMP signaling pathway. Melatonin not only inhibits adenylate cyclase , but also activates phosphilpase C. This enhances the release of arachidonic acid ( arachidonate) . By binding to melatonin receptors 1 and 2, downstream signaling cascades produce various effects in the body. Melatonin receptors are G protein-coupled receptors expressed in various tissues of the body. There are two receptor subtypes in humans, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). Melatonin and melatonin receptor agonists, either on the market or in clinical trials, bind and activate both receptor types. The binding of agonists to receptors has been studied for more than two decades or since 1986. It is known by some but still not fully understood. When melatonin receptor agonists bind to and activate their receptors, it causes a number of physiological processes. MT1 receptors are expressed in many areas of the central nervous system (CNS): hypothalamic suprachiasmatic nucleus (SNC), hippocampus, substantia nigra, cerebellum, central dopaminergic pathways, ventral tegmental area, and nucleus accumbens. MT1 is also expressed in the retina, ovary, testis, mammary gland, coronary circulation and aorta, gallbladder, liver, kidney, skin, and immune system. The MT2 receptor is expressed primarily in the CNS but also in lung, heart, coronary and aortic tissues, myometrium and granulosa cells, immune cells, duodenum, and adipocytes. The binding of melatonin to melatonin receptors activates several signaling pathways. MT1 receptor activation inhibits adenylyl cyclase, and its inhibition causes a ripple effect of non-activation; starting with a reduction in cyclic adenosine monophosphate (cAMP) formation and then progressively reducing protein kinase A (PKA) activity, which in turn Blocks the phosphorylation of cAMP response element binding protein (CREB binding protein) to P-CREB. The MT1 receptor also activates phospholipase C (PLC), which affects ion channels and regulates intracellular ion flux. Binding of melatonin to MT2 receptors inhibits adenylyl cyclase, thereby reducing cAMP formation. It also blocks guanylyl cyclase, thereby preventing the formation of cyclic guanosine monophosphate (cGMP). Binding to the MT2 receptor may affect PLC, thereby increasing protein kinase C (PKC) activity.

absorb

Melatonin absorption and bioavailability vary widely.

metabolism

Hepatic metabolism to at least 14 identified metabolites (identified in mouse urine): 6-hydroxymelatonin glucuronide, 6-hydroxymelatonin sulfate, N-acetyl 5-hydroxytryptamine glucuronide, N -Acetyl serotonin sulfate, 6-hydroxymelatonin, 2-oxomelatonin, 3-hydroxymelatonin, melatonin, melatonin cyclic melatonin, cyclic N-acetyl 5- Serotonin glucuronide, cyclic 6-hydroxymelatonin, 5-hydroxyindole-3-acetaldehyde, dihydroxymelatonin and its glucuronic acid conjugates. 6-Hydroxymelatonin glucuronide is the major metabolite in mouse urine (accounting for 65-88% of the total melatonin metabolites in urine).

half life

35 to 50 minutes

toxicity

It is generally well tolerated when taken orally. The most common side effects, daytime drowsiness, headache and dizziness, appeared to occur with the same frequency as placebo. Other reported side effects include transient depressive symptoms, mild tremors, mild anxiety, abdominal cramping, irritability, decreased alertness, confusion, nausea, vomiting, and hypotension.

Safety in Adults: There is evidence that oral and parenteral forms may be safe for up to two months if used appropriately. Some evidence suggests it can be used safely by mouth in some patients for up to 9 months. Topical use may also be safe if used appropriately. Safety in Children: Melatonin appears to be safe to use in the small number of children who participated in short-term clinical trials. However, concerns about children's safety have arisen based on their developmental status. People under the age of 20 produce higher levels of melatonin than adults over the age of 20. Melatonin levels are inversely related to gonadal development, and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during pregnancy: High doses of melatonin administered orally or parenterally may suppress ovulation. Not recommended for use by people who are pregnant or trying to become pregnant. Safety during breastfeeding: Not recommended as safety has not been established. Melatonin levels are inversely related to gonadal development, and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during pregnancy: High doses of melatonin administered orally or parenterally may suppress ovulation. Not recommended for use by people who are pregnant or trying to become pregnant. Safety during breastfeeding: Not recommended as safety has not been established. Melatonin levels are inversely related to gonadal development, and it is thought that exogenous administration of melatonin may adversely affect gonadal development. Safety during pregnancy: High doses of melatonin administered orally or parenterally may suppress ovulation. Not recommended for use by people who are pregnant or trying to become pregnant.

Safety during breastfeeding: Not recommended as safety has not been established.

medicine interactions

1,2-Benzodiazepine The risk or severity of adverse effects can be increased when melatonin is combined with 1,2-benzodiazepine.
Concomitant use of abamepyr with abamepyr may increase the serum concentration of melatonin.
The metabolism of melatonin can be increased when Abatacept is combined with Abatacept.
The serum concentration of melatonin may be increased when Abiraterone is used concomitantly with Abiraterone.
Acamprosate excretion can be decreased when Acamprosate is combined with Melatonin.
Acenocoumarol The metabolism of Acenocoumarol can be decreased when combined with Melatonin.
Acetaminophen The metabolism of melatonin can be decreased when combined with acetaminophen.
Acetazolamide The risk or severity of adverse effects can be increased when Acetazolamide is combined with Melatonin.
Acetylphenazine The risk or severity of adverse effects can be increased when Acetylphenazine is combined with melatonin.

food interactions

Avoid alcohol. Alcohol intake may reduce the effects of melatonin.
Take after meals. Taking melatonin after eating can slow absorption and lower melatonin Cmax.

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
銀杏:從古樹到現代補充品 - 探索葉子、功效和用途

銀杏:從古樹到現代補充品 - 探索葉子、功效和用途

什麼是銀杏? 銀杏 (Ginkgo biloba) 是一種獨特而古老的樹種,是銀杏目中唯一倖存的成員,其歷史可以追溯到 2 億多年前。 獨特的扇形銀杏葉原產於中國、日本和韓國,廣泛用於生產膳食補充劑和萃取物。 它們含有高水平的抗氧化劑,如類黃酮和萜類化合物,據稱具有改善認知功能、改善循環、抗發...
什麼是左旋谷氨酰胺? 好處和副作用

什麼是左旋谷氨酰胺? 好處和副作用

什麼是L-谷氨酰胺? 左旋谷氨酰胺 (L-麩醯胺酸) (L-Glutamine) 是蛋白質合成中的關鍵胺基酸。 它是體液中最豐富的氨基酸。 生物活性形式是 L-麩醯胺酸,而 D-麩醯胺酸較不重要。 它被認為是有條件必需的,這意味著在壓力或疾病期間可能需要從飲食中補充額外的量。 L-麩醯胺酸的來...
什麼是MCT油? 你需要知道的一切

什麼是MCT油? 你需要知道的一切

MCT 油 (MCT oil) 是一種由中鏈三酸甘油酯製成的膳食補充劑,中鏈三酸甘油酯是一種較小且易於消化的飽和脂肪酸。 它是通過稱為分餾的過程從椰子油或棕櫚仁油中提取的。 MCT油含有己酸、辛酸和癸酸。 與長鏈脂肪不同,MCT 可以被肝臟快速吸收和代謝,為大腦提供即時能量或酮作為替代燃料來源...
如何選擇除濕機?

如何選擇除濕機?

以下是根據您的需求選擇合適的除濕機的一些關鍵提示: 確定所需的尺寸和容量 測量您想要除濕的空間的平方英尺。 較大的空間需要更高容量的除濕機。 評估濕度水平 - 與中等潮濕的房間(每天 8-12 品脫)相比,非常潮濕的空間(例如地下室)需要更高的容量單位(每天 12-32 品脫)。 考慮與房間...
什麼是低筋麵粉? 可以用什麼代替?

什麼是低筋麵粉? 可以用什麼代替?

低筋麵粉即蛋糕粉 (cake flour),是特細或超細麵粉,在澳洲作為餅乾粉 (biscuit flour) 或糕點粉 (pastry flour) ,是一種由軟質小麥製成的精細研磨麵粉,蛋白質含量較低,通常約 7-9%。 它具有幾個獨特的特性,使其成為烘焙蛋糕的理想選擇: 什麼是蛋糕粉? ...
忌廉有哪些不同種類?

忌廉有哪些不同種類?

忌廉有多種類型,每種都有不同的脂肪含量和烹飪用途: 濃奶油 (heavy cream) 脂肪含量最高,通常約36-40%。 它非常適合製作生奶油以及為醬汁和甜點。 鮮奶油 (Whipping cream) 與濃奶油類似,但脂肪含量略低,約 30-36%。 它用於製作鮮奶油,也可以添加到湯和醬汁...
如何判斷忌廉是否壞了?

如何判斷忌廉是否壞了?

忌廉的保存期限有多長? 根據 FDA 的規定,忌廉 (奶油) 是乳脂含量至少 36% 的奶油。它可以進行巴氏殺菌、超巴氏殺菌和均質化。應存放在華氏40度或以下的冰箱中。若經過超巴氏殺菌並正確處理,未開封時可保存長達 30 天,開封後可保存 7 天。要檢查它是否新鮮或安全,請品嚐它,尋找變質的跡...
什麼是加碘鹽?

What is iodized salt?

What is iodized salt? Iodized salt is table salt fortified with iodine. Iodine is an important micronutrient needed by the body to produce thyroid...
什麼是巴斯克焦香芝士蛋糕? 附有食譜

什麼是巴斯克焦香芝士蛋糕? 附有食譜

巴斯克焦起司蛋糕 (Basque Burnt Cheesecake),是一種獨特美味的甜點,起源於西班牙巴斯克地區。 與通常光滑且奶油狀的傳統芝士蛋糕不同,巴斯克燒焦芝士蛋糕具有焦糖化的、幾乎焦糖狀的外部和奶油狀的蛋奶凍內部。這款起司蛋糕僅由幾種基本成分製成:奶油乳酪、糖、雞蛋、濃奶油和少量麵...