從肉到肌肉

1. Breaking down meat
The process begins in your mouth with mechanical digestion of food: your teeth cut, shred, and mash the steak into smaller particles. Mix with saliva to form a semi-solid mass.

2. Digesting Protein
Once swallowed, ground beef travels down the esophagus and lands in the stomach. Here, enzymes such as pepsin chemically break down the steak into amino acid chains. The whole mess is now more like a liquid called chyme.

3. Create usable portions
Chyme passes from the stomach into the small intestine. Here, additional enzymes—trypsin and chymotrypsin—act on the amino acid chains, breaking them down into smaller parts until only single and double amino acids remain.

4. Preparing for transport
The amino acids are then transported through the cells of the intestinal wall and into the bloodstream, a process called absorption. They are now ready to be sent through the blood vessels to your muscles.

5. Strengthen muscles
After the amino acids reach the muscles, they will be transported to the cells through capillaries. There, amino acids help repair damaged fibers. In fact, muscle protein synthesis won't occur unless the amino acids are readily available - all the more reason to eat some protein with every meal.

Overview

  1. Animals are slaughtered.
  2. When oxygen is depleted, metabolism switches from an aerobic state to an anaerobic state.
  3. Glycogen is converted to lactic acid, lowering muscle pH from ~7 to 5.6.
  4. Creatine phosphate (rephosphorylates ADP to ATP) and ATP decrease.
  5. Without ATP for relaxation, myosin heads form tight bonds with actin.
  6. The muscles enter rigor mortis.
  7. Protein hydrolysis begins, causing muscles to become tender.

The isoelectric point of muscle and its pH value

  • Greatly affects water holding capacity
  • Water Holding Capacity WHC – The ability of meat to retain moisture under external forces such as cutting, heating, grinding or pressing.

Calpain and calpain inhibitors

  • Calpain degrades proteins during colder aging
  • The role of calpain inhibitors in inhibiting calpain

Thus, if an animal has higher levels of calpain, calpain activity is lower, and colder aging has less of an effect on muscle tenderness. Brahman cows are naturally tougher due to higher levels of calpain.

PSE and DFD muscles

  • Poultry and pigs carry one or two genes for malignant hypothermia (halothane)
  • The muscles of these animals tend to be pale, soft, and exudative (PSE).
  • Antemortem stress often increases the severity of PSE.
  • The pH value of the muscle drops rapidly and the body temperature rises, resulting in pale meat, soft texture, and water exudation.
  • The negative impact on consumer sales appeal and shrinkage is greatly increased.
  • PSE can be induced in animals without halothane

Dark, firm, dry (DFD) meat

  • Caused by glycogen shortage at slaughter (chronic stress).
  • If there is not enough glycogen converted to lactic acid, muscle pH will remain high, near 7.0 (living muscle pH)
  • Antemortem stressors can lead to DFD.
  • Results in excessively dark muscle color, firm texture, and dry muscle surface (opposite of PSE muscle); sweeter.
  • Beef has the most DFD problems.
  • Rare among poultry

Thaw the severe event

The muscle is frozen before rigor mortis (a phenomenon in which muscles contract after death) occurs: ATP has not been used for rigor mortis events and will be high when muscles are frozen.

Freezing damages the sarcoplasmic reticulum (SR).

When thawing occurs, calcium is released from the sarcoplasmic reticulum, causing massive contractions due to higher ATP levels. The result is toughening.

Cold shortening

  • A similar event occurs when cold muscles shorten but do not freeze (rigor mortis occurs at freezing temperatures below 15°C – 16°C b/f).
  • Because it cools too quickly, the sarcoplasmic reticulum cannot retain calcium.
  • While ATP is still available, the muscle contracts.
  • Electrical stimulation consumes ATP during contraction, helping to prevent cold shortening.

Thermal Loop

Occurs in thin-skinned carcasses (lean carcasses that have not been cooled properly).

Beef carcasses require at least 0.25 inches of backfat, while lambs require at least 0.10 inches of backfat.

The outer ring of the muscle becomes cold too quickly

  • Glycolysis rate is slow
  • The pH value decreases slowly
  • It takes longer to develop rigor

The result is an unwelcome ring around the muscle that is darker in color and rougher in texture.

Blood splatter

  • Caused by ruptured capillaries, usually between periods of stun; blood pressure spikes after stunning.
  • The result is small blood spots in the muscles; the most common problem is in pigs and poultry.
  • Stunning: Too long a time between sticks will cause blood splashing, and the excitement before stunning will also cause blood splashing.
  • If it is fat, it is called "fire fat".
  • Quality Solutions

Electrical stimulation

  • Electricity makes fire "exceptionally" soft.
  • Running an electric current through the body causes the muscles to contract and consume ATP...thus, inducing rigor mortis.
  • Reduce hot rings and cold shortening and may increase tenderness of lower grade carcasses.
  • Brighter muscle color will better show marbling.
  • ES will improve overall carcass quality

Hot deboning

  • Hot deboning is ideal because hot bones have a higher water-holding capacity.
  • Prevents rapid decline in muscle pH.
  • Without skeletal restraint, muscles will shorten and become tougher if they are put through the rigors rather than grinding.
  • Intramuscular injections of salt and PO4 can reduce tenderness problems.

Delayed freezing

  • After trimming, let the carcass sit at room temperature for 2 to 4 hours.
  • There is a microbiological problem.
  • The higher the temperature, the faster glycolysis occurs, ATP is used up, and cold shortening is prevented. Aging speed is accelerated.

Related Products

Review

All comments are moderated before being published

HealthyPIG Magazine

View all
哪些職業對健康影響最大?科學與現實的分析

哪些職業對健康影響最大?科學與現實的分析

在現代社會中,工作佔據了人們生命中相當大的一部分。然而,不同職業對健康的風險並不相同。一些工作性質或環境,會顯著增加慢性病、心理壓力、甚至縮短壽命的風險。以下從科學研究與醫學角度,探討幾類對健康損害較大的職業,並附上相關統計數據。

電擊槍的機制與對人體健康影響

電擊槍的機制與對人體健康影響

在現代執法中,警察常使用所謂「非致命性武器」(less-lethal weapons),其中最廣為人知的便是 電擊槍(Taser)。電擊槍的設計初衷是提供一種介於徒手制服與槍械之間的選擇,藉由暫時性電擊使嫌疑人失去行動能力,以降低致命暴力發生的風險。然而,電擊槍並非完全無害,背後涉及的電流機制與人體生理反應值得深入探討。

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

PD-(L)1/VEGF「三抗」:腫瘤免疫治療新方向

腫瘤治療的新挑戰 近十年來,免疫檢查點抑制劑(Immune Checkpoint Inhibitors, ICIs)改變咗癌症治療格局。當中 PD-1/PD-L1 抑制劑 已經成為多種腫瘤的一線或二線療法,而 VEGF 抑制劑 亦係抗血管生成治療嘅核心藥物。然而,臨床數據顯示,雖然 PD-(L...
疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛的健康風險與新科技防護:REMONY 裝置的認證分析

疲勞駕駛一直是全球道路安全的重要議題。許多人將疲勞視為「只是累了」,但科學研究表明,當人處於極度疲倦時,大腦功能下降的程度可與酒精中毒相當。不僅如此,長時間駕駛還會對身體健康造成慢性負擔。隨著科技發展,越來越多可穿戴裝置被設計用來協助監測疲勞狀態,其中,日本 Medirom 公司開發的 REMONY 裝置近日獲得國土交通省(MLIT)認證,成為市場矚目的焦點。本文將先探討疲勞駕駛的健康風險,然後客觀分析 REMONY 裝置的技術特點與潛力。

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟為何會變黃乾裂?成因與護理全攻略

腳跟皮膚為何容易出現問題? 腳跟係身體承受最大壓力嘅部位之一。每日行走、站立,腳跟長期摩擦同受壓,如果缺乏適當護理,就會導致角質層過度增厚、乾燥同龜裂。當角質層愈厚,皮膚顏色會慢慢變得偏黃,甚至暗啡。 造成腳跟黃、裂、脫皮的常見原因 角質層增厚長期行走或穿硬底鞋,令腳跟角質層積聚過多,顏色...
Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 會唔會對人體有害?科學研究同日常生活影響全解析

Wi-Fi 幾乎已經變成日常生活不可或缺嘅一部分。無論係屋企、公司、學校,甚至咖啡店同巴士,都有無線網絡覆蓋。但好多讀者都會擔心:「成日浸喺 Wi-Fi 入面,會唔會慢慢影響身體健康?會唔會致癌?會唔會令我失眠或者精神差?」 今篇文章會由淺入深,帶大家了解 Wi-Fi 嘅電磁波特性、科學研究結...
長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

長時間保持一個姿勢,點解會痛、僵硬、麻痺?|久坐對身體嘅危害

好多人每日要長時間坐喺辦公室、電腦前面,或者瞓覺時維持同一個姿勢。結果往往出現腰酸背痛、手腳麻痺,甚至覺得關節「鎖住」郁唔到。久坐傷身腳麻痺點解長時間坐姿影響健康,都係大家經常搜尋嘅問題。今次我哋就一齊睇下背後原因。

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症如何擴散:從一個器官走到另一個器官的旅程

癌症最令人畏懼的地方,不單在於原發腫瘤本身,而是它能夠 轉移(Metastasis) —— 由原本的器官擴散至身體其他部位。事實上,大多數癌症致命的原因,並非來自腫瘤的「原居地」,而是因為它在其他重要器官(如腦、肝、骨、肺)形成了新的腫瘤。

腦癌種類全面介紹|常見類型與特徵

腦癌種類全面介紹|常見類型與特徵

腦癌(Brain Cancer)泛指源自腦部或蔓延至腦部的惡性腫瘤。臨床上可分為兩大類: 原發性腦腫瘤(Primary Brain Tumors):由腦部細胞本身變異而成。 繼發性腦腫瘤(Secondary / Metastatic Brain Tumors):由其他器官的癌細胞(如肺...