鐵吸收的生物化學

基礎知識

有兩種類型的可吸收膳食鐵:血紅素和非血紅素鐵。

  • 來自動物食物來源(肉類、海鮮、家禽)的血紅蛋白和肌紅蛋白的血紅素鐵是最容易吸收的形式(15% 至 35%),占我們總吸收鐵的 10% 或更多。
  • 非血紅素鐵來源於植物和鐵強化食品,吸收性較差。

儘管鐵在環境中相對豐富,而且人類每日鐵需求量相對較低,但鐵通常是人類飲食中限制生長的營養素。鐵攝入量低是發達國家大多數貧血的原因,也是非工業化國家近一半貧血的原因。鐵吸收不足的一個原因是,在暴露於氧氣後,鐵會形成高度不溶的氧化物,這些氧化物在人體胃腸道中無法吸收。人腸上皮細胞含有頂端膜結合酶,其活性可以調節,並且可以將不溶性鐵 (Fe3+) 還原為可吸收的亞鐵 (Fe2+) 離子。 

雖然缺鐵是一個相對常見的問題,但它並不是鐵平衡譜中唯一必須避免的極端情況。鐵過載多對心臟、肝臟和內分泌器官的傷害尤其大。過量的亞鐵通過芬頓反應形成自由基,通過與脂質、蛋白質和核酸的氧化反應對組織造成損害。因此,在可能的情況下,飲食中的鐵吸收和影響體內生物利用度的因素受到嚴格控制。

細胞層面

大多數膳食鐵的吸收發生在十二指腸和近端空腸,很大程度上取決於鐵原子的物理狀態。在生理 pH 值下,鐵以氧化的三價鐵 (Fe3+) 狀態存在。要被吸收,鐵必須處於亞鐵 (Fe2+) 狀態或被血紅素等蛋白質結合。十二指腸近端胃酸的低 pH 值允許鐵還原酶十二指腸細胞色素 B (Dcytb) 在腸細胞的刷狀緣上將不溶性鐵 (Fe3+) 轉化為可吸收的亞鐵 (Fe2+) 離子。胃酸的產生在血漿鐵穩態中起關鍵作用。當使用質子泵抑製劑如奧美拉唑時,鐵的吸收會大大降低。一旦三價鐵在腸腔內被還原為二價鐵,腸細胞頂膜上的一種稱為二價金屬陽離子轉運蛋白 1 (DMT1) 的蛋白質將鐵轉運穿過頂膜進入細胞。缺氧誘導因子 2 (HIF-2α) 在腸粘膜的缺氧環境中上調 DMT1 和 Dcytb 的水平。

某些膳食化合物會抑製或增強十二指腸 pH 依賴性鐵吸收過程。  

  • 鐵吸收的抑製劑包括植酸鹽,它是一種在植物性飲食中發現的化合物,對鐵的吸收表現出劑量依賴性影響。多酚存在於紅茶和涼茶、咖啡、葡萄酒、豆類、穀物、水果和蔬菜中,並已被證明可抑製鐵的吸收。與僅阻止非血紅素鐵吸收的其他抑製劑(例如多酚和植酸鹽)不同,鈣在最初被腸細胞吸收時會抑制血紅素和非血紅素鐵。酪蛋白、乳清、蛋清和植物蛋白等動物蛋白已被證明可抑制人體對鐵的吸收。草酸存在於菠菜、甜菜、豆類和堅果中,具有結合和抑製鐵吸收的作用。  
  • 鐵吸收的增強劑主要是維生素 C的作用,當它被包含在非血紅素鐵含量高的飲食中(通常是蔬菜含量高的膳食)時,它可以克服所有飲食抑製劑的作用。抗壞血酸在胃的低 pH 值中與三價鐵 (Fe3+) 形成螯合物,這種螯合物在十二指腸的鹼性環境中持續存在並保持可溶性。

分子層面

一旦進入腸細胞,鐵可以以鐵蛋白的形式儲存或通過基底外側膜轉運到與鐵轉運蛋白結合的循環中。

鐵蛋白是一種中空的球形蛋白質,由 24 個亞基組成,可增強體內鐵水平的儲存和調節。鐵通過摻入稱為水鐵礦 [FeO(OH)]8[FeO(H2PO4)] 的固體結晶礦物中以 Fe3+ 狀態存儲在鐵蛋白球的內部。  

鐵蛋白分子的單體具有氧化鐵酶活性(Fe3+ ↔ Fe2+),使 Fe2+ 離子從水鐵礦晶格結構中遷移出來,使其隨後通過 ferroportin 流出腸上皮細胞並穿過腸上皮細胞的基底外側膜進入循環。跨膜蛋白 ferroportin 是細胞鐵的唯一流出途徑,幾乎完全受鐵調素水平的調節。高水平的鐵、炎性細胞因子和氧氣導致肽激素鐵調素水平升高。鐵調素與 ferroportin 結合,導致其內化和降解,並有效地將細胞鐵分流到鐵蛋白儲存中並防止其吸收到血液中。從而,

如果鐵調素水平低且 ferroportin 沒有下調,亞鐵 (Fe2+) 可以從腸細胞中釋放出來,在那裡它再次被氧化成三價鐵 (Fe3+) 與轉鐵蛋白結合,轉鐵蛋白是其存在於血漿中的載體蛋白。兩種含銅酶,血漿中的銅藍蛋白和腸細胞基底外側膜上的 hephaestin,催化亞鐵氧化並隨後與血漿中的轉鐵蛋白結合。轉鐵蛋白的主要作用是螯合鐵以使其可溶,防止活性氧物質的形成,並促進其轉運到細胞中。  

臨床意義

在缺鐵性貧血的情況下,腸細胞 DMT1 和 Dcytb 水平上調,並且 DMT1 的突變已被證明會導緻小紅細胞性貧血和肝鐵過載。

降解十二指腸粘膜的情況會減少鐵的吸收,包括:

  • 乳糜瀉
  • 熱帶澆道
  • 克羅恩病
  • 十二指腸癌
  • 十二指腸潰瘍
  • 家族性腺瘤性息肉病

慢性病性貧血是一種正常色素、正細胞性貧血,表現為鐵蛋白儲存量升高但全身鐵含量降低。炎症狀態會增加細胞因子釋放 (IL-6),從而刺激肝臟中的鐵調素表達。鐵調素通過鐵轉運蛋白降解導致鐵吸收減少,並減少巨噬細胞釋放鐵。慢性病性貧血細胞中積聚的鐵以鐵蛋白的形式儲存。 

缺鐵性貧血是一種低色素性小紅細胞性貧血,由出血、膳食鐵減少或鐵吸收減少引起。經期的育齡婦女需要的鐵量是同齡男性的兩倍。懷孕和哺乳也顯著增加了女性對鐵的需求,有助於使缺鐵成為世界上最常見的飲食缺乏症。

評論

請注意,評論必須經過批准才能發佈

健康專欄

View all
Aveeno Dermexa Emollient Daily Cream——呵護敏感肌膚的理想選擇

Aveeno Dermexa Emollient Daily Cream——呵護敏感肌膚的理想選擇

現代生活中,敏感肌膚的護理需求越來越受到重視。特別是對於有乾燥、癢感或其他皮膚問題的朋友來說,一款有效又溫和的保濕霜是必不可少的。今天,我們來推薦一款深受歡迎的產品:Aveeno Dermexa Emollient Daily Cream。這款產品以其卓越的護膚效果和溫和配方,成為敏感肌膚的理...
Transform Your Home with the Philips Smart 1000i Air Purifier: Allergy Relief Meets Smart Living

Transform Your Home with the Philips Smart 1000i Air Purifier: Allergy Relief Meets Smart Living

In today’s fast-paced world, where indoor air quality often goes unnoticed, the Philips Air Purifier Smart 1000i Series offers a breath of fresh ai...
皮質醇管理:如何控制皮質醇?我們能夠自行管理或調節劑量嗎?

皮質醇管理:如何控制皮質醇?我們能夠自行管理或調節劑量嗎?

皮質醇是一種在壓力反應中發揮重要作用的激素,適量的皮質醇可以幫助我們應對壓力和維持健康。然而,過量或長期的高皮質醇水平可能會對身體帶來負面影響。以下我們將探討如何控制和管理皮質醇,包括自然方法、藥物干預、以及測量皮質醇的方式。 1. 自然方法調節皮質醇 壓力管理技術:研究顯示,冥想、深呼吸...
皮質醇是什麼?它如何影響我們的身體與日常生活?

皮質醇是什麼?它如何影響我們的身體與日常生活?

皮質醇(Cortisol)是一種由腎上腺分泌的激素,通常被稱為「壓力荷爾蒙」。它的主要功能是幫助身體應對壓力情境,並且在多種生理過程中扮演重要角色。皮質醇的釋放受腦部下丘腦-垂體-腎上腺軸(HPA軸)控制,這是一個調節人體反應於壓力的系統。 皮質醇對身體的影響 當我們處於壓力下時,皮質...
為什麼我們在緊張時總是忍不住吃零食?科學解密壓力性飲食行為

為什麼我們在緊張時總是忍不住吃零食?科學解密壓力性飲食行為

當人們感到緊張或壓力時,經常會無意識地吃零食,這種行為主要涉及大腦的多巴胺系統、情緒反應以及身體的生理需求。以下是背後的幾個主要原因: 壓力荷爾蒙的影響:壓力會觸發皮質醇的釋放,這種壓力激素會引發人們對高糖和高脂肪食物的渴望。這些食物能帶來短暫的愉悅感,因為它們能刺激大腦分泌多巴胺,讓人感...
光學治療濕疹 - 全面總結

光學治療濕疹 - 全面總結

簡介 光療使用光波來治療某些皮膚問題。皮膚會暴露於紫外線 (UV) 光下一段設定的時間。光療利用人造的紫外線光源,紫外線也來自陽光。當與一種叫做甲氧補骨脂素的藥物一起使用時,這個程序稱為 PUVA 光療。 紫外線光能夠抑制皮膚中的免疫系統細胞,對於因免疫系統過度反應引起的皮膚問題有幫助。可以使...
什麼是「操縱者」?

什麼是「操縱者」?

操縱者,也可以說成「擅用手段的人」,「心機重的人」。操縱者利用欺騙、影響或者其他形式的心理操控來控制或影響他人,以達到自己的目標。他們的行為通常包含使用隱蔽、間接或偷偷摸摸的手法來獲得他們想要的東西,往往是以犧牲他人為代價。以下是一些常見的特徵和手段: 欺騙: 他們可能會說謊或扭曲事實來誤...
什麼是肌肉抽搐?你需要去看醫生嗎?

什麼是肌肉抽搐?你需要去看醫生嗎?

肌肉抽搐,也稱為肌束顫動,是指身體各部分出現不自主的肌肉收縮。以下是肌肉抽搐的原因、症狀及管理方法的詳細介紹: 肌肉抽搐的原因 壓力和焦慮 高水平的壓力和焦慮會導致肌肉緊張和抽搐。身體對壓力的反應會觸發神經系統,導致肌肉不自主地收縮。 疲勞 過度使用或劇烈運動後的肌肉疲勞會導致肌...
蘋果與牙齒健康:保護牙齒的小技巧

蘋果與牙齒健康:保護牙齒的小技巧

蘋果因其豐富的營養成分和清爽的口感而受到廣泛喜愛。然而,蘋果的酸性和糖分也可能對牙齒健康產生影響。這篇文章將深入探討蘋果對牙齒健康的影響,並提供保護牙齒的小技巧。 1. 蘋果的酸性 蘋果含有天然的果酸,這些酸性物質在食用後會暫時降低口腔中的pH值,增加牙齒表面珐琅質的溶解風險。長期食用酸性食物...